Simplification of Fractions

In simplification of fractions parenthesis can also be used. The three parenthesis (1st), {2nd}, [3rd] are used commonly.

Examples on simplification of fractions:

1. 3 1/3 ÷ 5/3 - 1/10 of 2 ½ + 7/4

Solution:

3 1/3 ÷ 5/3 - 1/10 of 2 ½ + 7/4

= (3 × 3 + 1)/3 ÷ 5/3 – 1/10 of (2 × 2 + 1)/2 + 7/4

= 10/3 ÷ 5/3 - 1/10 of 5/2 + 7/4


                      [‘of’ simplified]

= 10/3 × 3/5 – ½ × ½ + 7/4                  [‘÷’ simplified]




= 2/1 - ¼ + 7/4                   [‘×’ simplified]

= (2 × 4)/(1 × 4) - (1 × 1)/(4 × 1) + (7 × 1)/(4 × 1)

= 8/4 - ¼ + 7/4

[Now the denominators are same of all the fractions]

= (8 – 1 + 7)/4                  [‘+’ and ‘-‘ simplified]

= 14/4

= 7/2

= 3\(\frac{1}{2}\)

2. 45 of 3/5 ÷ 1 2/3 + 3 of 1/3 – 10

Solution:

45 of 3/5 ÷ 1 2/3 + 3 of 1/3 – 10

= 45 of 3/5 ÷ (1 × 3 + 2)/3 + 3 of 1/3 – 10

= 45 of 3/5 ÷ 5/3 + 3 of 1/3 – 10

= 45 × 3/5 ÷ 5/3 + 3 × 1/3 – 10                [‘of’ simplified]




= 9 × 3 × 3/5 + 3 × 1/3 – 10             [‘÷’ simplified],  [‘×’ simplified]

= (27 × 3)/5 + 1 – 10


= 81/5 + 1 – 10

= (81 × 1)/(5 × 1) + (1 × 5)/(1 × 5) – (10 × 5)/(1 × 5)

= 81/5 + 5/5 – 50/5

[Now the denominators are same of all the fractions]

= (81 + 5 – 50)/5                     [‘+’ and ‘-‘ simplified]

= 36/5




= 7 1/5




3.

43 of 1/86 ÷ 1/14 × 2/7 + 9/4 – ¼

Solution:

43 of 1/86 ÷ 1/14 × 2/7 + 9/4 – ¼

= 43 × 1/86 ÷ 1/14 × 2/7 + 9/4 – ¼








= 2/1 + 9/4 – ¼


= (2 × 4)/(1 × 4) + (9 × 1)/(4 × 1) - (1 × 1)/(4 × 1)

= 8/4 + 9/4 - 1/4

[Now the denominators are same of all the fractions]

= (8 + 9 - 1)/4

= 16/4

= 4



4. 9/10 ÷ (3/5 + 2 1/10)

Solution:

9/10 ÷ (3/5 + 2 1/10)

= 9/10 ÷ (3/5 + 21/10)

= 9/10 ÷ ((6 +21)/10)

[Solve within brackets]

= 9/10 ÷ 27/10

= 9/10 × 10/27




= 1/3



5. (7 ¼ - 6 1/4) of (2/5 + 3/15)

Solution:

(7 ¼ - 6 1/4) of (2/5 + 3/15)

= (29/4 – 25/4) of (2/5 + 3/15)

= ((29 – 25)/4) × ((6 + 3)/15)

[Solve within brackets]

= 4/4 × 9/15


          [Reduce to lowest term]

= 1 × 3/5


= 3/5



6. {18 + (2 ½ + 4/5)} of 1/1000

Solution:

{18 + (2 ½ + 4/5)} of 1/1000

= {18 + (5/2 + 4/5)} of 1/1000

= {18 + ((25 + 8)/10)} of 1/1000

= {18 + 33/10} of 1/1000

= {(180 + 33)/10} of 1/1000

= 213/10 of 1/1000

= 213/10 × 1/1000

= (213 × 1)/(10 × 1000)

= 213/10000

= 0.0213



These are the examples of simplification of fractions.

Multiplication is Repeated Addition.

Multiplication of Fractional Number by a Whole Number.

Multiplication of a Fraction by Fraction.

Properties of Multiplication of Fractional Numbers.

Multiplicative Inverse.

Worksheet on Multiplication on Fraction.

Division of a Fraction by a Whole Number.

Division of a Fractional Number.

Division of a Whole Number by a Fraction.

Properties of Fractional Division.

Worksheet on Division of Fractions.

Simplification of Fractions.

Worksheet on Simplification of Fractions.

Word Problems on Fraction.

Worksheet on Word Problems on Fractions.





5th Grade Numbers Page

5th Grade Math Problems

From Simplification of Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 14, 24 04:31 PM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  2. Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

    Sep 14, 24 03:39 PM

    2 digit numbers table
    Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 14, 24 02:12 PM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 13, 24 02:48 AM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  5. Comparison of Two-digit Numbers | Arrange 2-digit Numbers | Examples

    Sep 12, 24 03:07 PM

     Compare 39 and 36
    What are the rules for the comparison of two-digit numbers? We know that a two-digit number is always greater than a single digit number. But, when both the numbers are two-digit numbers

    Read More