Subscribe to our YouTube channel for the latest videos, updates, and tips.


Remainder Theorem

Definition of Remainder Theorem:

Let p(x) be any polynomial of degree greater than or equal to 1 and let α be any real number. If p(x) is divided by the polynomial (x - α), then the remainder is p(α).


In other words:

If the polynomial f(x) is divided by x - α then the remainder R is given by f(x) = (x - α) q(x) + R, where q(x) is the quotient and R is a constant (because the degree of the remainder is less than the degree of the divisor x - α).


Putting x = α, f(α) = (α - α)q(α) + R or f(α) = R

When the polynomial f(x) is divided by x - α, the remainder R = f(α) =  value of f(x) when x is α.

Solved examples on Remainder Theorem:

1. Find the remainder when x\(^{3}\) + 3x\(^{2}\) + 3x +1 is divided by

(i) x + 1

(ii) x - \(\frac{1}{2}\)

(iii) x

(iv) x + γ

(v) 5 + 2x

Solution:

(i) Let f(x) = x\(^{3}\) + 3x\(^{2}\) + 3x +1, divisor is x +1

Then by the Remainder Theorem we get,

Remainder = f(-1)

                  = (-1)\(^{3}\) + 3(-1)\(^{2}\) + 3(-1) +1

                  = -1 + 3 - 3 + 1

                  = 0

(ii) Let f(x) = x\(^{3}\) + 3x\(^{2}\) + 3x +1, divisor is x - \(\frac{1}{2}\)

Then by the Remainder Theorem we get,

Remainder = f(\(\frac{1}{2}\))

                  = (\(\frac{1}{2}\))\(^{3}\) + 3(\(\frac{1}{2}\))\(^{2}\) + 3(\(\frac{1}{2}\)) + 1

                  = \(\frac{1}{8}\) + \(\frac{3}{4}\) + \(\frac{3}{2}\) + 1

                  = \(\frac{1 + 6 + 12 + 8}{8}\)

                  = \(\frac{27}{8}\)

(iii) Let f(x) = x\(^{3}\) + 3x\(^{2}\) + 3x +1, divisor is x i.e., x - 0

Then by the Remainder Theorem we get,

Remainder = f(0)

                  = 0\(^{3}\) + 3 ∙ 0\(^{2}\) + 3 ∙  0 + 1

                  = 1

(iv) Let f(x) = x\(^{3}\) + 3x\(^{2}\) + 3x +1, divisor is x + γ

Then by the Remainder Theorem we get,

Remainder = f(-γ)

                  = (-γ)\(^{3}\) + 3(-γ)\(^{2}\) + 3(-γ) +1

                  = -γ\(^{3}\) + 3γ\(^{2}\) - 3γ +1

(v) Let f(x) = x\(^{3}\) + 3x\(^{2}\) + 3x +1, divisor is 5 + 2x

Then by the Remainder Theorem we get,

Remainder = f(-\(\frac{5}{2}\))

                   = (-\(\frac{5}{2}\))\(^{3}\) + 3(-\(\frac{5}{2}\))\(^{2}\) + 3(-\(\frac{5}{2}\)) + 1

                   = \(\frac{-125}{8}\) + \(\frac{75}{4}\) - \(\frac{15}{2}\) + 1

                   = \(\frac{-125 + 150 -60 + 8}{8}\)

                   = -\(\frac{27}{8}\)



2. If 3x\(^{2}\) - 7x + 11 is divided by x - 2 then find the remainder.

Solution:

Here p(x) = 3x\(^{2}\) - 7x + 11, divisor is x - 2

Therefore, remainder = p(2)                    [Taking x = 2 from x - 2 = 0]

                                   = 3(2)\(^{2}\) - 7(2) + 11

                                   = 12 - 14 + 11

                                   = 9

● Factorization









10th Grade Math

From Remainder Theorem to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 09, 25 02:37 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More