Polynomial

An expression of the form a\(_{0}\)x\(^{n}\) + a\(_{1}\)x\(^{n - 1}\) + a\(_{2}\)x\(^{n - 2}\) + a\(_{3}\)x\(^{n - 3}\) + ..... + a\(_{n}\) where a\(_{0}\), a\(_{1}\), a\(_{2}\), a\(_{3}\), ....., a\(_{n}\) are given numbers (real or complex), n is a non-negative integer and x is a variable is called a polynomial in x.

a\(_{0}\), a\(_{1}\), a\(_{2}\), a\(_{3}\), etc., are called the coefficients of x\(^{n}\), x\(^{n - 1}\), x\(^{n - 2}\), x\(^{n - 3}\), etc., respectively.

a\(_{0}\)x\(^{n}\), a\(_{1}\)x\(^{n - 1}\), a\(_{2}\)x\(^{n - 2}\), a\(_{3}\)x\(^{n - 3}\), ....., a\(_{n}\) are called the terms of the polynomial.

a\(_{n}\) is called the constant term. Clearly, it is also the coefficient of x\(^{0}\).

If a\(_{0}\) ≠ 0, the polynomial is said to be of degree n and the term a\(_{0}\)x\(^{n}\) is called the leading term.

The general form of a polynomial of degree 1 is a\(_{0}\)x + a\(_{1}\)where a\(_{0}\) ≠ 0.

The general form of a polynomial of degree 2 is a\(_{0}\)x\(^{2}\) + a\(_{1}\)x + a\(_{2}\) where a\(_{0}\) ≠ 0.

A non-zero constant a\(_{0}\) itself is said to be a polynomial of degree 0 while a polynomial all of whose coefficients are zero is said to be a zero polynomial and is denoted by 0 and no degree is assigned to it.

Since a polynomial is an expression containing the variable x, it is denoted by f(x), p(x) or g(x) etc.

The value of a polynomial f(x) for x = a where a is real number or a complex number is denoted by f(a).

In particular, if the coefficients a\(_{0}\), a\(_{1}\), a\(_{2}\), a\(_{3}\), .... of a polynomial f(x) be all real numbers, the polynomial f(x) is said to be a real polynomial.


Examples of polynomial:

(i) 7x\(^{2}\) + 5x - 3 is a polynomial in x of degree 2 or a quadratic polynomial in x.

(ii) 4x\(^{3}\) + 9x\(^{2}\) - 4x + 2 is a polynomial in x of degree 3 or a cubic polynomial in x.

(iii) 5 - 2x\(^{\frac{5}{3}}\) + 9x\(^{2}\) is an expression but not a polynomial, since it contains a term containing x\(^{\frac{5}{3}}\) , where \(\frac{5}{3}\) is not a non-negative integer. 

● Factorization









10th Grade Math

From Polynomial to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheet on Triangle | Homework on Triangle | Different types|Answers

    Jun 21, 24 02:19 AM

    Find the Number of Triangles
    In the worksheet on triangle we will solve 12 different types of questions. 1. Take three non - collinear points L, M, N. Join LM, MN and NL. What figure do you get? Name: (a)The side opposite to ∠L…

    Read More

  2. Worksheet on Circle |Homework on Circle |Questions on Circle |Problems

    Jun 21, 24 01:59 AM

    Circle
    In worksheet on circle we will solve 10 different types of question in circle. 1. The following figure shows a circle with centre O and some line segments drawn in it. Classify the line segments as ra…

    Read More

  3. Circle Math | Parts of a Circle | Terms Related to the Circle | Symbol

    Jun 21, 24 01:30 AM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  4. Circle | Interior and Exterior of a Circle | Radius|Problems on Circle

    Jun 21, 24 01:00 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More

  5. Quadrilateral Worksheet |Different Types of Questions in Quadrilateral

    Jun 19, 24 09:49 AM

    In math practice test on quadrilateral worksheet we will practice different types of questions in quadrilateral. Students can practice the questions of quadrilateral worksheet before the examinations

    Read More