Problems on Remainder Theorem

We will discuss here how to solve the problems on Remainder Theorem.

1. Find the remainder (without division) when 8x\(^{2}\) +5x + 1 is divisible by x - 10

Solution:

Here, f(x) = 8x\(^{2}\) + 5x + 1.

By remainder Theorem,

The remainder when f(x) is divided by x – 10 is f(10).


2. Find the remainder when x\(^{3}\) - ax\(^{2}\) + 6x - a is divisible by x - a.

Solution:

Here, f(x) = x\(^{3}\) - ax\(^{2}\) + 6x - a, divisor is (x - a)

Therefore, remainder = f(a) , [ Taking x = a from x - a = 0]

                                   = a\(^{3}\) - a ∙ a\(^{2}\) + 6 ∙ a - a

                                   = a\(^{3}\) -a\(^{3}\) + 6a - a

                                   = 5a.

3. Find the remainder (without division) when x\(^{2}\) +7x - 11 is divisible by 3x - 2

Solution:

Here, f(x) = x\(^{2}\) + 7x – 11 and 3x - 2 = 0 ⟹  x = \(\frac{2}{3}\)

By remainder Theorem,

The remainder when f(x) is divided by 3x - 2 is f(\(\frac{2}{3}\)).

Therefore, remainder = f(\(\frac{2}{3}\)) = (\(\frac{2}{3}\))\(^{2}\) + 7 ∙ (\(\frac{2}{3}\)) - 11

= \(\frac{4}{9}\) + \(\frac{14}{3}\) - 11

= -\(\frac{53}{9}\)



4. Check whether 7 + 3x is a factor of 3x\(^{3}\) + 7x.

Solution:

Here f(x) = 3x\(^{3}\) + 7x and divisor is 7 + 3x

Therefore, remainder = f(-\(\frac{7}{3}\)), [Taking x = -\(\frac{7}{3}\) from 7 + 3x = 0]

                                   = 3 ∙ (-\(\frac{7}{3}\))\(^{3}\) + 7(-\(\frac{7}{3}\))

                                   = -3 × \(\frac{343}{27}\) - \(\frac{49}{3}\)

                                   = \(\frac{-343 - 147}{9}\)

                                   = \(\frac{-490}{9}\)

                                   ≠ 0

Hence, 7 + 3x is not a factor of f(x) = 3x\(^{3}\) + 7x.



5. Find the remainder (without division) when 4x\(^{3}\) - 3x\(^{2}\) + 2x - 4 is divisible by x + 2

Solution:

Here, f(x) = 4x\(^{3}\) - 3x\(^{2}\) + 2x - 4 and x + 2 = 0 ⟹  x = -2

By remainder Theorem,

The remainder when f(x) is divided by x + 2 is f(-2).

Therefore, remainder = f(-2) = 4(-2)\(^{3}\) - 3 ∙ (-2)\(^{2}\) + 2 ∙ (-2) - 4

= - 32 - 12 - 4 - 4

= -52



6. Check whether the polynomial: f(x) = 4x\(^{3}\) + 4x\(^{2}\) - x - 1 is a multiple of 2x + 1.

Solution:

f(x) = 4x\(^{3}\) + 4x\(^{2}\) - x - 1 and divisor is 2x + 1

Therefore, remainder = f(-\(\frac{1}{2}\)), [Taking x = \(\frac{-1}{2}\) from 2x + 1 = 0]

                                   = 4 ∙ (-\(\frac{1}{2}\))\(^{3}\) + 4(-\(\frac{1}{2}\))\(^{2}\) - (-\(\frac{1}{2}\)) -1

                                   = -\(\frac{1}{2}\) + 1 + \(\frac{1}{2}\) - 1

                                   = 0

Since the remainder is zero ⟹ (2x + 1) is a factor of f(x). That is f(x) is a multiple of (2x + 1).

● Factorization




10th Grade Math

From Problems on Remainder Theorem to HOME




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 04, 24 09:47 AM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  2. Worksheet on Subtraction | Practice the Questions | Free Answers

    Oct 04, 24 01:28 AM

    In worksheet on subtraction, all grade students can practice the questions on subtracting numbers with more than two digits. This exercise sheet on subtraction can be practiced by the students

    Read More

  3. Subtraction Word Problems - 2-Digit Numbers | Subtraction Problems

    Oct 03, 24 03:22 PM

    Understand the concept on subtraction word problems - 2-digit numbers for the second grade. Read the question carefully to subtract the two-digit numbers to find the differences and follow the

    Read More

  4. Worksheet on Checking Subtraction Using Addition | Free Answers | Math

    Oct 03, 24 02:22 PM

    Checking Subtraction using Addition
    Here we can use addition to check the answer for the subtraction. Subtract ans check your answer. Find the difference and check your answer using addition.

    Read More

  5. Check for Subtraction and Addition | Checking Subtraction | Problems

    Oct 03, 24 01:13 PM

    Checking Subtraction with Addition
    We will learn to check for subtraction and addition answers after solving. Difference of two numbers is correct when the sum of the subtrahend number and the difference is equal to the minuend.

    Read More