Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

Reflexive Relation on Set

Reflexive relation on set is a binary element in which every element is related to itself.

Let A be a set and R be the relation defined in it.

R is set to be reflexive, if (a, a) ∈ R for all a ∈ A that is, every element of A is R-related to itself, in other words aRa for every a ∈ A.

A relation R in a set A is not reflexive if there be at least one element a ∈ A such that (a, a) βˆ‰ R.

Consider, for example, a set A = {p, q, r, s}.

The relation R\(_{1}\) = {(p, p), (p, r), (q, q), (r, r), (r, s), (s, s)} in A is reflexive, since every element in A is R\(_{1}\)-related to itself.

But the relation R\(_{2}\) = {(p, p), (p, r), (q, r), (q, s), (r, s)} is not reflexive in A since q, r, s ∈ A but (q, q) βˆ‰ R\(_{2}\), (r, r) βˆ‰ R\(_{2}\) and (s, s) βˆ‰ R\(_{2}\)

Solved example of reflexive relation on set:

1. A relation R is defined on the set Z (set of all integers) by β€œaRb if and only if 2a + 3b is divisible by 5”, for all a, b ∈ Z. Examine if R is a reflexive relation on Z.

Solution:

Let a ∈ Z. Now 2a + 3a = 5a, which is divisible by 5. Therefore aRa holds for all a in Z i.e. R is reflexive.


2. A relation R is defined on the set Z by β€œaRb if a – b is divisible by 5” for a, b ∈ Z. Examine if R is a reflexive relation on Z.

Solution:

Let a ∈ Z. Then a – a is divisible by 5. Therefore aRa holds for all a in Z i.e. R is reflexive.


3. Consider the set Z in which a relation R is defined by β€˜aRb if and only if a + 3b is divisible by 4, for a, b ∈ Z. Show that R is a reflexive relation on on setZ.

Solution:

Let a ∈ Z. Now a + 3a = 4a, which is divisible by 4. Therefore aRa holds for all a in Z i.e. R is reflexive.


4. A relation ρ is defined on the set of all real numbers R by β€˜xρy’ if and only if |x – y| ≀ y, for x, y ∈ R. Show that the ρ is not reflexive relation.

Solution:

The relation ρ is not reflexive as x = -2 ∈ R but |x – x| = 0 which is not less than -2(= x).

● Set Theory

● Sets

● Representation of a Set

● Types of Sets

● Pairs of Sets

● Subset

● Practice Test on Sets and Subsets

● Complement of a Set

● Problems on Operation on Sets

● Operations on Sets

● Practice Test on Operations on Sets

● Word Problems on Sets

● Venn Diagrams

● Venn Diagrams in Different Situations

● Relationship in Sets using Venn Diagram

● Examples on Venn Diagram

● Practice Test on Venn Diagrams

● Cardinal Properties of Sets






7th Grade Math Problems

8th Grade Math Practice

From Reflexive Relation on Set to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?