Subscribe to our YouTube channel for the latest videos, updates, and tips.


Rationalization

We know that irrational numbers are those which can’t be expressed in the ‘p/q’ form where ‘p’ and ‘q’ are integers. But these rational numbers can be used in rational fractions as either numerator or denominator. When these numbers are present in numerators of fractions, calculations can be done. But when these exist in denominators of fractions, they make calculations more difficult and complicated. To avoid such complications in the numeric calculations, we use method of rationalization. Hence, rationalization can be defined as the process by which we eliminate radicals present in the denominators of fractions. 


To understand the concept in a better let us have a look at below solved examples based on rationalization:


1. Rationalization by multiplication of both numerator and denominator by a root:

(i) Rationalize \(\frac{1}{\sqrt{2}}\).


Solution: 

Since \(\sqrt{2}\) is a irrational number and is present in denominator of the fraction. So, we first need to rationalize it. This can be done by multiplying both numerator and denominator by \(\sqrt{2}\). So,

\(\frac{1}{\sqrt{2}}\)\(\times\) \(\frac{\sqrt{2}}{\sqrt{2}}\)

⟹ \(\frac{\sqrt{2}}{2}\)


(ii) Rationalize \(\frac{1}{\sqrt{5}}\).

Solution: 

Since \(\sqrt{5}\) is a irrational number and is present in denominator of the fraction. So, we first need to rationalize it. This can be done by multiplying both numerator and denominator by \(\sqrt{5}\). So,

\(\frac{1}{\sqrt{5}}\)\(\times\) \(\frac{\sqrt{5}}{\sqrt{5}}\)

⟹ \(\frac{\sqrt{5}}{5}\)


(iii) Rationalize \(\frac{1}{\sqrt{11}}\).

Solution: 

Since \(\sqrt{11}\) is a irrational number and is present in denominator of the fraction. So, we first need to rationalize it. This can be done by multiplying both numerator and denominator by \(\sqrt{11}\). So,

\(\frac{1}{\sqrt{11}}\)\(\times\)\(\frac{\sqrt{11}}{\sqrt{11}}\)

⟹ \(\frac{\sqrt{11}}{11}\)


2. Rationalization by multiplication with conjugate.

In the fractions that have irrational numbers in the form of addition or subtraction in the denominators of fraction, we use the method of multiplication with conjugate for rationalizing the fraction and making the problem a simplified.

We have, (x + \(\sqrt{y}\))(x - \(\sqrt{y}\)) = x\(^{2}\) - \((\sqrt{y})^{2}\) = (x\(^{2}\) - y) which is a rational number.

Thus, by multiplying the irrational number (x + \(\sqrt{y}\)) by the irrational number (x - \(\sqrt{y}\)) we get a rational numebr. Here, (x - \(\sqrt{y}\))  is the rationalising factor of (x + \(\sqrt{y}\)). Similarly, (x + \(\sqrt{y}\)) is the rationalising factor of (x - \(\sqrt{y}\)).

The irrational number (x - \(\sqrt{y}\)) is also called the conjugate irrational number, or conjugate, of (x + \(\sqrt{y}\)). Similarly, (x + \(\sqrt{y}\)) is the conjugate of (x - \(\sqrt{y}\)).

For example:

The conjugate of (5 + \(\sqrt{7}\)) is (5 - \(\sqrt{7}\))

The conjugate of (5 - \(\sqrt{7}\)) is (5 + \(\sqrt{7}\))

The conjugate of (10 + \(\sqrt{3}\)) is (10 - \(\sqrt{3}\))

The conjugate of (10 - \(\sqrt{3}\)) is (10 + \(\sqrt{3}\))


Below given are the examples on rationalizing the fractions by multiplying with conjugate:

(i) Rationalize \(\frac{1}{4 + \sqrt{2}}\).

Solution: 

Since, the given problem has irrational term in the denominator with addition and subtraction format. So we need to rationalize using the method of multiplication by conjugate. So,

\(\frac{1}{4 + \sqrt{2}}\)  \(\times\) \(\frac{4 - \sqrt{2}}{4 - \sqrt{2}}\)

⟹ \(\frac{4 - \sqrt{2}}{4^{2} - \sqrt{2^{2}}}\), [Since, (a + b)(a - b) = a\(^{2}\) - b\(^{2}\)}]

⟹ \(\frac{4 - \sqrt{2}}{16 - 2}\)

⟹ \(\frac{4 - \sqrt{2}}{14}\)

So, the required rationalized number is: 

\(\frac{4 - \sqrt{2}}{14}\)


(ii) Rationalize\(\frac{1}{3 - \sqrt{5}}\).

Solution:

Since, the given problem has irrational term in the denominator with addition and subtraction format. So we need to rationalize using the method of multiplication by conjugate. So,

\(\frac{1}{3 - \sqrt{5}}\) \(\times\)  \(\frac{3 + \sqrt{5}}{3 + \sqrt{5}}\)

⟹ \(\frac{3 + \sqrt{5}}{3^{2} - \sqrt{5^{2}}}\), [Since, (a + b)(a - b) = a\(^{2}\) - b\(^{2}\)}]

⟹ \(\frac{3 + \sqrt{5}}{9-5}\)

⟹ \(\frac{3 + \sqrt{5}}{4}\)

⟹ So, the required rationalized number is \(\frac{3 + \sqrt{5}}{4}\)


Irrational Numbers

Definition of Irrational Numbers

Representation of Irrational Numbers on The Number Line

Comparison between Two Irrational Numbers

Comparison between Rational and Irrational Numbers

Rationalization

Problems on Irrational Numbers

Problems on Rationalizing the Denominator

Worksheet on Irrational Numbers






9th Grade Math

From Rationalization to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Speed Distance and Time | Relation between Speed Distance and Time

    May 21, 25 12:58 PM

    Speed is defined as the distance covered per unit time. Speed = (Distance Travelled)/(Time Taken) Or, S = D/T. Speed also requires a unit of measurement. If the distance is in kilometres

    Read More

  2. Math Problem Answers | Solved Math Questions and Answers | Free Math

    May 21, 25 12:45 PM

    Partial fraction
    Math problem answers are solved here step-by-step to keep the explanation clear to the students. In Math-Only-Math you'll find abundant selection of all types of math questions for all the grades

    Read More

  3. Test of Divisibility | Divisibility Rules| Divisible by 2, 3, 5, 9, 10

    May 21, 25 10:29 AM

    The test of divisibility by a number ‘x’ is a short-cut method to detect whether a particular number ‘y’ is divisible by the number ‘x’ or not. Test of divisibility by 2: A number is divisible by 2

    Read More

  4. Divisible by 7 | Test of Divisibility by 7 |Rules of Divisibility by 7

    May 21, 25 10:17 AM

    Divisible by 7
    Divisible by 7 is discussed below: We need to double the last digit of the number and then subtract it from the remaining number. If the result is divisible by 7, then the original number will also be

    Read More

  5. Average Word Problems | Worksheet on Average Questions with Answers

    May 20, 25 05:40 PM

    In average word problems we will solve different types of problems on basic concept of average. 1. Richard scored 80, 53, 19, 77, 29 and 96 runs in 6 innings in a series. Find the average runs scored…

    Read More