Subscribe to our YouTube channel for the latest videos, updates, and tips.


Problems on Rationalizing the Denominator

In the previous topics of rational numbers we have learnt to solve the problems regarding the fractional numbers, i.e., the numbers that have real numbers in their denominators. But we haven’t seen much problems regarding those fractions which have irrational numbers in their denominator. Yet I the topic of rationalization we have seen few examples on how to rationalize denominators. Under this topic we’ll see more problems regarding the calculations of rationalization of denominators. Below are given some examples on how to rationalize the complex denominators and proceed further to solve the problems involving these types of complex denominators:-


1. Rationalize \(\frac{1}{\sqrt{11}}\).

Solution:

Since the given fraction has an irrational denominator, so we need to rationalize this and make it more simple. So, to rationalize this, we will multiply the numerator and denominator of the given fraction by root 11, i.e., √11.So,

\(\frac{1}{\sqrt{11}}\) \(\times\) \(\frac{\sqrt{11}}{\sqrt{11}}\)

⟹ \(\frac{\sqrt{11}}{11}\)

So, the required rationalized form of the given denominator is:

\(\frac{\sqrt{11}}{11}\).


2. Rationalize \(\frac{1}{\sqrt{21}}\).

Solution:

The given fraction has an irrational denominator. So, we need to make it simple by rationalizing the given denominator. To do so, we’ll have to multiply and divide the given fraction by root 21, i.e., √21.So,

\(\frac{1}{\sqrt{21}}\)\(\times\) \(\frac{\sqrt{21}}{\sqrt{21}}\)

⟹\(\frac{\sqrt{21}}{21}\)

So the required rationalized fraction is:

\(\frac{\sqrt{21}}{21}\)



3. Rationalize \(\frac{1}{\sqrt{39}}\).

Solution:

Since the given fraction has an irrational denominator in it. So, to make the calculations more easy we need to make it simple and hence we need to rationalize the denominator. To do so, we’ll have to multiply both the numerator and denominator of the fraction with root 39, i.e., √39. So,

\(\frac{1}{\sqrt{39}}\)\(\times\) \(\frac{\sqrt{39}}{\sqrt{39}}\)

⟹\(\frac{\sqrt{39}}{39}\)

So, the required rationalized fraction is:

\(\frac{\sqrt{39}}{39}\).

4. Rationalize \(\frac{1}{4+\sqrt{10}}\).

Solution:

The given fraction consists of irrational denominator. To make the calculations more simplified we will have to rationalize the denominator of the given fraction. To do so, we’ll have to multiply both numerator and denominator by conjugate of the given denominator, i.e., \(\frac{4-\sqrt{10}}{4-\sqrt{10}}\). So,

\(\frac{1}{4+\sqrt{10}}\)\(\times\) \(\frac{4-\sqrt{10}}{4-\sqrt{10}}\)

⟹\(\frac{4-\sqrt{10}}{4^{2}-\sqrt{10^{2}}}\)

{(a+ b)(a-b) = (a)\(^{2}\) - (b)\(^{2}\)}

⟹\(\frac{4-\sqrt{10}}{16-10}\)

⟹ \(\frac{4-\sqrt{10}}{6}\)

So the required rationalized fraction is:

\(\frac{4-\sqrt{10}}{6}\).


5. Rationalize \(\frac{1}{\sqrt{6}-\sqrt{5}}\).

Solution:

Since the given fraction has irrational denominator in it. So, to make it more simplified we will have to rationalize the denominator of the given fraction. To do so, we’ll have to multiply both numerator and denominator of the fraction by \(\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}\). So,

\(\frac{1}{\sqrt{6}-\sqrt{5}}\)\(\times\) \(\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}\)

⟹ \(\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6^{2}}-\sqrt{5^{2}}}\)

{(a+ b)(a-b) = (a)\(^{2}\) - (b)\(^{2}\)}

⟹ \(\frac{\sqrt{6}+\sqrt{5}}{1}\)

⟹ \(\sqrt{6}+\sqrt{5}\)

So, the required rationalized fraction is:

 \(\sqrt{6}+\sqrt{5}\)


6. Rationalize \(\frac{2}{\sqrt{11}-\sqrt{6}}\).

Solution:

Since, the given fraction has irrational denominator in it which makes the calculations more complex. So, to make them more simplified we’ll have to rationalize the denominator of the given fraction. To do so, we’ll have to multiply both numerator and denominator of the given fraction with \(\frac{\sqrt{11}+\sqrt{6}}{\sqrt{11}+\sqrt{6}}\).

So,

\(\frac{2}{\sqrt{11}-\sqrt{6}}\)\(\times\)\(\frac{\sqrt{11}+\sqrt{6}}{\sqrt{11}+\sqrt{6}}\)

[(a + b)(a - b) = (a)\(^{2}\) - (b)\(^{2}\)]

⟹\(\frac{2\times (\sqrt{11}+\sqrt{6})}{\sqrt{11^{2}}-\sqrt{6^{2}}}\)

⟹ \(\frac{2\times (\sqrt{11}+\sqrt{6})}{11-6}\)

⟹ \(\frac{2\times (\sqrt{11}+\sqrt{6})}{5}\)

So, the required rationalized fraction is:

\(\frac{2\times (\sqrt{11}+\sqrt{6})}{5}\).


Irrational Numbers

Definition of Irrational Numbers

Representation of Irrational Numbers on The Number Line

Comparison between Two Irrational Numbers

Comparison between Rational and Irrational Numbers

Rationalization

Problems on Irrational Numbers

Problems on Rationalizing the Denominator

Worksheet on Irrational Numbers






9th Grade Math

From Problems on Rationalizing the Denominator to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Conversion of Temperature | Temperature Worksheets | Ans

    Jun 24, 25 02:20 AM

    Worksheet on Conversion of Temperature
    We will practice the questions given in the worksheet on conversion of temperature from one scale into another. We know the two different temperature scales are the Fahrenheit scale and the

    Read More

  2. Worksheet on Temperature |Celsius to Fahrenheit, Fahrenheit to Celsius

    Jun 24, 25 01:58 AM

    Worksheet on Temperature
    In the worksheet on temperature we will solve 10 different types of questions.1. Which is colder 32°F or 0°C? 2. Water boils at ...°C and freezes at ....°F.

    Read More

  3. 5th Grade Temperature | Fahrenheit Scale | Celsius Scale | Thermometer

    Jun 24, 25 12:28 AM

    Mercury Thermometer
    We will discuss here about the concept of temperature. We have already learned about various types of measurements like length, mass capacity and time. But if we have fever, non of these measurements

    Read More

  4. Converting the Temperature from Fahrenheit to Celsius | Examples

    Jun 20, 25 12:53 PM

    In converting the temperature from Fahrenheit to Celsius the formula is, C = (5/9)(F - 32); The steps of converting from Fahrenheit to Celsius are reversed here.

    Read More

  5. Converting the Temperature from Celsius to Fahrenheit | Examples

    Jun 20, 25 12:01 PM

    In converting the temperature from Celsius to Fahrenheit the formula is F = (9/5)C + 32. Steps of converting from Celsius (°C) to Fahrenheit (°F)

    Read More