Problems on Rationalizing the Denominator

In the previous topics of rational numbers we have learnt to solve the problems regarding the fractional numbers, i.e., the numbers that have real numbers in their denominators. But we haven’t seen much problems regarding those fractions which have irrational numbers in their denominator. Yet I the topic of rationalization we have seen few examples on how to rationalize denominators. Under this topic we’ll see more problems regarding the calculations of rationalization of denominators. Below are given some examples on how to rationalize the complex denominators and proceed further to solve the problems involving these types of complex denominators:-


1. Rationalize \(\frac{1}{\sqrt{11}}\).

Solution:

Since the given fraction has an irrational denominator, so we need to rationalize this and make it more simple. So, to rationalize this, we will multiply the numerator and denominator of the given fraction by root 11, i.e., √11.So,

\(\frac{1}{\sqrt{11}}\) \(\times\) \(\frac{\sqrt{11}}{\sqrt{11}}\)

⟹ \(\frac{\sqrt{11}}{11}\)

So, the required rationalized form of the given denominator is:

\(\frac{\sqrt{11}}{11}\).


2. Rationalize \(\frac{1}{\sqrt{21}}\).

Solution:

The given fraction has an irrational denominator. So, we need to make it simple by rationalizing the given denominator. To do so, we’ll have to multiply and divide the given fraction by root 21, i.e., √21.So,

\(\frac{1}{\sqrt{21}}\)\(\times\) \(\frac{\sqrt{21}}{\sqrt{21}}\)

⟹\(\frac{\sqrt{21}}{21}\)

So the required rationalized fraction is:

\(\frac{\sqrt{21}}{21}\)



3. Rationalize \(\frac{1}{\sqrt{39}}\).

Solution:

Since the given fraction has an irrational denominator in it. So, to make the calculations more easy we need to make it simple and hence we need to rationalize the denominator. To do so, we’ll have to multiply both the numerator and denominator of the fraction with root 39, i.e., √39. So,

\(\frac{1}{\sqrt{39}}\)\(\times\) \(\frac{\sqrt{39}}{\sqrt{39}}\)

⟹\(\frac{\sqrt{39}}{39}\)

So, the required rationalized fraction is:

\(\frac{\sqrt{39}}{39}\).

4. Rationalize \(\frac{1}{4+\sqrt{10}}\).

Solution:

The given fraction consists of irrational denominator. To make the calculations more simplified we will have to rationalize the denominator of the given fraction. To do so, we’ll have to multiply both numerator and denominator by conjugate of the given denominator, i.e., \(\frac{4-\sqrt{10}}{4-\sqrt{10}}\). So,

\(\frac{1}{4+\sqrt{10}}\)\(\times\) \(\frac{4-\sqrt{10}}{4-\sqrt{10}}\)

⟹\(\frac{4-\sqrt{10}}{4^{2}-\sqrt{10^{2}}}\)

{(a+ b)(a-b) = (a)\(^{2}\) - (b)\(^{2}\)}

⟹\(\frac{4-\sqrt{10}}{16-10}\)

⟹ \(\frac{4-\sqrt{10}}{6}\)

So the required rationalized fraction is:

\(\frac{4-\sqrt{10}}{6}\).


5. Rationalize \(\frac{1}{\sqrt{6}-\sqrt{5}}\).

Solution:

Since the given fraction has irrational denominator in it. So, to make it more simplified we will have to rationalize the denominator of the given fraction. To do so, we’ll have to multiply both numerator and denominator of the fraction by \(\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}\). So,

\(\frac{1}{\sqrt{6}-\sqrt{5}}\)\(\times\) \(\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6}+\sqrt{5}}\)

⟹ \(\frac{\sqrt{6}+\sqrt{5}}{\sqrt{6^{2}}-\sqrt{5^{2}}}\)

{(a+ b)(a-b) = (a)\(^{2}\) - (b)\(^{2}\)}

⟹ \(\frac{\sqrt{6}+\sqrt{5}}{1}\)

⟹ \(\sqrt{6}+\sqrt{5}\)

So, the required rationalized fraction is:

 \(\sqrt{6}+\sqrt{5}\)


6. Rationalize \(\frac{2}{\sqrt{11}-\sqrt{6}}\).

Solution:

Since, the given fraction has irrational denominator in it which makes the calculations more complex. So, to make them more simplified we’ll have to rationalize the denominator of the given fraction. To do so, we’ll have to multiply both numerator and denominator of the given fraction with \(\frac{\sqrt{11}+\sqrt{6}}{\sqrt{11}+\sqrt{6}}\).

So,

\(\frac{2}{\sqrt{11}-\sqrt{6}}\)\(\times\)\(\frac{\sqrt{11}+\sqrt{6}}{\sqrt{11}+\sqrt{6}}\)

[(a + b)(a - b) = (a)\(^{2}\) - (b)\(^{2}\)]

⟹\(\frac{2\times (\sqrt{11}+\sqrt{6})}{\sqrt{11^{2}}-\sqrt{6^{2}}}\)

⟹ \(\frac{2\times (\sqrt{11}+\sqrt{6})}{11-6}\)

⟹ \(\frac{2\times (\sqrt{11}+\sqrt{6})}{5}\)

So, the required rationalized fraction is:

\(\frac{2\times (\sqrt{11}+\sqrt{6})}{5}\).


Irrational Numbers

Definition of Irrational Numbers

Representation of Irrational Numbers on The Number Line

Comparison between Two Irrational Numbers

Comparison between Rational and Irrational Numbers

Rationalization

Problems on Irrational Numbers

Problems on Rationalizing the Denominator

Worksheet on Irrational Numbers






9th Grade Math

From Problems on Rationalizing the Denominator to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More