From previous topics of irrational numbers it has become clear that rationalization of denominator is one of the most important steps done while doing calculations which involve irrational denominators. In the previous topic of rationalization we have learnt how to rationalize the denominator. In this topic, we will get to solve some problems regarding rationalization of denominators. Below are given some problems involving calculation of rationalization of denominator:
1. Rationalize \(\frac{1}{\sqrt{11}}\).
2. Rationalize \(\frac{1}{\sqrt{37}}\).
3. Rationalize \(\frac{1}{\sqrt{17}}\).
4. Rationalize \(\frac{1}{\sqrt{23}}\).
5. Rationalize \(\frac{1}{\sqrt{46}}\).
6. Rationalize \(\frac{1}{\sqrt{37}}\).
7. Rationalize \(\frac{1}{1+\sqrt{3}}\).
8. Rationalize \(\frac{1}{1+\sqrt{7}}\).
9. Rationalize \(\frac{1}{4+\sqrt{13}}\).
10. Rationalize \(\frac{1}{7+\sqrt{29}}\).
11. Rationalize \(\frac{1}{11-\sqrt{13}}\).
12. Rationalize \(\frac{1}{9-\sqrt{57}}\).
13. Rationalize \(\frac{1}{13-\sqrt{15}}\).
14. Rationalize \(\frac{1}{\sqrt{13}-\sqrt{11}}\).
15. Rationalize \(\frac{1}{\sqrt{21}-\sqrt{29}}\).
16. Rationalize \(\frac{1}{\sqrt{31}+\sqrt{41}}\).
17. Rationalize \(\frac{1}{\sqrt{21}+\sqrt{37}}\).
18. Rationalize \(\frac{2}{\sqrt{5}+\sqrt{7}}\).
19. Rationalize \(\frac{5}{\sqrt{28}+\sqrt{37}}\).
20. Rationalize \(\frac{6}{\sqrt{53}-\sqrt{49}}\).
21. Rationalize \(\frac{17}{\sqrt{53}-\sqrt{49}}\).
22. Rationalize the denominator and find the conjugate of the fraction so formed- \(\frac{1}{\sqrt{5}-\sqrt{4}}\).
23. Rationalize the denominator and find the conjugate of the resulting fraction- \(\frac{2}{\sqrt{11}-\sqrt{9}}\).
24. Rationalize the fraction and find the conjugate of the resulting fraction- \(\frac{6}{\sqrt{21}-\sqrt{19}}\).
25. Rationalize the given fraction and find the conjugate of the resulting fraction- \(\frac{10}{\sqrt{59}-\sqrt{41}}\).
26. Rationalize the fraction and find the conjugate of the resulting fraction- \(\frac{19}{21-\sqrt{41}}\).
27. Find the value of ‘a’ in the given equation:
\(\frac{1}{\sqrt{17}-\sqrt{15}}\) = \(\frac{\sqrt{a}+\sqrt{15}}{2}\)
28. Find the value of ‘a’ in the given equation:
\(\frac{1}{\sqrt{19}-\sqrt{12}}\) = \(\frac{\sqrt{19}+\sqrt{a}}{7}\)
29. Find the value of ‘a’ in the given equation:
\(\frac{2}{11+\sqrt{14}}\) = \frac{2(11-\sqrt{14})}{a}\)
30. Solve the following problem:
\(\frac{1}{9+\sqrt{3}} + \frac{1}{3+\sqrt{2}}\).
31. Solve the following arithematic:
\(\frac{2}{11+\sqrt{15}} + \frac{9}{2+\sqrt{8}}\).
32. Solve the following:
\(\frac{11}{\sqrt{8}} + \frac{15}{\sqrt{21}}\).
Solutions:
1. \(\frac{\sqrt{11}}{11}\)
2. \(\frac{\sqrt{37}}{37}\)
3. \(\frac{\sqrt{17}}{17}\)
4. \(\frac{\sqrt{23}}{23}\)
5. \(\frac{\sqrt{46}}{46}\)
6. \(\frac{\sqrt{71}}{71}\)
7. \(\frac{\sqrt{3}-1}{2}\)
8. \(\frac{\sqrt{7}-1}{6}\)
9. \(\frac{4-\sqrt{13}}{3}\)
10. \(\frac{7-\sqrt{29}}{20}\)
11. \(\frac{11+\sqrt{13}}{108}\)
12. \(\frac{9+\sqrt{57}}{24}\)
13. \(\frac{-13-\sqrt{15}}{2}\)
14. \(\frac{\sqrt{13}+\sqrt{11}}{2}\)
15. \(\frac{\sqrt{29}-\sqrt{21}}{8}\)
16. \(\frac{\sqrt{41}-\sqrt{31}}{10}\)
17. \(\frac{\sqrt{37}-\sqrt{21}}{16}\)
18. \(\frac{\sqrt{37}-\sqrt{21}}{16}\)
19. \(\frac{5(\sqrt{37}-\sqrt{28})}{9}\)
20. \(\frac{3(\sqrt{53}+7)}{2}\)
21. \(\frac{17(\sqrt{53}+7)}{4}\)
22. \(\frac{\sqrt{5}-\sqrt{4}}{1}\)
23. \(\frac{\sqrt{11}+\sqrt{9}}{1}\)
24. \(\frac{3(\sqrt{19}-\sqrt{21})}{1}\)
25. \(\frac{5(\sqrt{41}-\sqrt{59})}{9}\)
26. \(\frac{19(\sqrt{41}-21)}{400}\)
27. a = √17
28. a = √12
29. a = 107
30. \(\frac{-171-7\sqrt{3}-78\sqrt{2}}{546}\)
31. \(\frac{477\sqrt{2}-2\sqrt{15}-455}{106}\)
32. \(\frac{231+120\sqrt{21}}{168}\)
Irrational Numbers
Definition of Irrational Numbers
Representation of Irrational Numbers on The Number Line
Comparison between Two Irrational Numbers
Comparison between Rational and Irrational Numbers
Problems on Irrational Numbers
Problems on Rationalizing the Denominator
Worksheet on Irrational Numbers
From Worksheet on Irrational Numbers to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jul 12, 24 03:08 PM
Jul 12, 24 02:11 PM
Jul 12, 24 03:21 AM
Jul 12, 24 12:59 AM
Jul 12, 24 12:30 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.