Processing math: 100%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Problems on Irrational Numbers

Till here we have learnt many concepts regarding irrational numbers. Under this topic we will be solving some problems related to irrational numbers. It will contain problems from all topics of irrational numbers.

Before moving to problems, one should look at the basic concepts regarding the comparison of irrational numbers.

For comparing them, we should always keep in mind that if square or cube roots of two numbers (‘a’ and ‘b’) are to be compared, such that ‘a’ is greater than ‘b’, then a2 will be greater than b2 and a3 will be greater than b2 and so on, i.e., nth power of ‘a’ will be greater than nth power of ‘b’. 

The same concept is to be applied for the comparison between rational and irrational numbers. 


So, now let’s have look at some problems given below:

1. Compare √11 and √21.

Solution: 

Since the given numbers are not the perfect square roots so the numbers are irrational numbers. To compare them let us first compare them into rational numbers. So,

(√11)2 = √11 × √11 = 11.

(√21)2 = √21 × √21 = 21.

Now it is easier to compare 11 and 21. 

Since, 21 > 11. So, √21 > √11.


2. Compare √39 and √19.

Solution: 

Since the given numbers are not the perfect square roots of any number, so they are irrational numbers. To compare them, we will first compare them into rational numbers and then perform the comparison. So,

(√39)2 = √39 × √39 = 39.

(√19)2 = √19 × √19 = 19

Now it is easier to compare 39 and 19. Since, 39 > 19.

So,√39 > √19.


3. Compare 315 and 311.

Solution: 

Since the given numbers are not the perfect cube roots. So, to make comparison between them e first need to convert them into rational numbers and then perform the comparison. So,

(315)3 = 315 × 315 × 315 = 15.

(311)3 = 311 × 311 × 311 = 11.

Since, 15 > 11. So, 315 > 311.


4. Compare 5 and √17.

Solution: 

Among the numbers given, one of them is rational while other one is irrational. So, to make comparison between them, we will raise both of them to them to the same power such that the irrational one becomes rational. So,

(5)2 = 5 × 5 = 25.

(√17)2 = √17 x × √17 = 17.

Since, 25 > 17. So, 5 > √17.


5. Compare 4 and 332.

Solution: 

Among the given numbers to make comparison, one of them is rational while other one is irrational. So, to make comparison both numbers will be raised to the same power such that the irrational one becomes rational. So,

43= 4 × 4 × 4 = 64.

(332)3 = 332 × 332 × 332 = 32.

Since, 64 > 32. So, 4 > 332.


6. Rationalize 14+2.

Solution: 

Since the given fraction contains irrational denominator, so we need to convert it into a rational denominator so that calculations may become easier and simplified ones. To do so we will multiply both numerator and denominator by the conjugate of the denominator. So,

14+2×(4242)

424222

42162

4214

So the rationalized fraction is: 4214.


7. Rationalize 21426.

Solution: 

Since the given fraction contains irrational denominator, so we need to convert it into a rational denominator so that calculations may become easier and simplified ones. To do so we will multiply both numerator and denominator by the conjugate of the denominator. So,

21426×14+2614+26


2(1426)142262

2(1426)19626

2(1426)170

 So, the rationalized fraction is: 2(1426)170.

Irrational Numbers

Definition of Irrational Numbers

Representation of Irrational Numbers on The Number Line

Comparison between Two Irrational Numbers

Comparison between Rational and Irrational Numbers

Rationalization

Problems on Irrational Numbers

Problems on Rationalizing the Denominator

Worksheet on Irrational Numbers





9th Grade Math

From Problems on Irrational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More