Problems on Irrational Numbers

Till here we have learnt many concepts regarding irrational numbers. Under this topic we will be solving some problems related to irrational numbers. It will contain problems from all topics of irrational numbers.

Before moving to problems, one should look at the basic concepts regarding the comparison of irrational numbers.

For comparing them, we should always keep in mind that if square or cube roots of two numbers (‘a’ and ‘b’) are to be compared, such that ‘a’ is greater than ‘b’, then a\(^{2}\) will be greater than b\(^{2}\) and a\(^{3}\) will be greater than b\(^{2}\) and so on, i.e., n\(^{th}\) power of ‘a’ will be greater than n\(^{th}\) power of ‘b’. 

The same concept is to be applied for the comparison between rational and irrational numbers. 


So, now let’s have look at some problems given below:

1. Compare √11 and √21.

Solution: 

Since the given numbers are not the perfect square roots so the numbers are irrational numbers. To compare them let us first compare them into rational numbers. So,

(√11)\(^{2}\) = √11 × √11 = 11.

(√21)\(^{2}\) = √21 × √21 = 21.

Now it is easier to compare 11 and 21. 

Since, 21 > 11. So, √21 > √11.


2. Compare √39 and √19.

Solution: 

Since the given numbers are not the perfect square roots of any number, so they are irrational numbers. To compare them, we will first compare them into rational numbers and then perform the comparison. So,

(√39)\(^{2}\) = √39 × √39 = 39.

(√19)\(^{2}\) = √19 × √19 = 19

Now it is easier to compare 39 and 19. Since, 39 > 19.

So,√39 > √19.


3. Compare \(\sqrt[3]{15}\) and \(\sqrt[3]{11}\).

Solution: 

Since the given numbers are not the perfect cube roots. So, to make comparison between them e first need to convert them into rational numbers and then perform the comparison. So,

\((\sqrt[3]{15})^{3}\) = \(\sqrt[3]{15}\) × \(\sqrt[3]{15}\) × \(\sqrt[3]{15}\) = 15.

\((\sqrt[3]{11})^{3}\) = \(\sqrt[3]{11}\) × \(\sqrt[3]{11}\) × \(\sqrt[3]{11}\) = 11.

Since, 15 > 11. So, \(\sqrt[3]{15}\) > \(\sqrt[3]{11}\).


4. Compare 5 and √17.

Solution: 

Among the numbers given, one of them is rational while other one is irrational. So, to make comparison between them, we will raise both of them to them to the same power such that the irrational one becomes rational. So,

(5)\(^{2}\) = 5 × 5 = 25.

(√17)\(^{2}\) = √17 x × √17 = 17.

Since, 25 > 17. So, 5 > √17.


5. Compare 4 and \(\sqrt[3]{32}\).

Solution: 

Among the given numbers to make comparison, one of them is rational while other one is irrational. So, to make comparison both numbers will be raised to the same power such that the irrational one becomes rational. So,

4\(^{3}\)= 4 × 4 × 4 = 64.

\((\sqrt[3]{32})^{3}\) = \(\sqrt[3]{32}\) × \(\sqrt[3]{32}\) × \(\sqrt[3]{32}\) = 32.

Since, 64 > 32. So, 4 > \(\sqrt[3]{32}\).


6. Rationalize \(\frac{1}{4 + \sqrt{2}}\).

Solution: 

Since the given fraction contains irrational denominator, so we need to convert it into a rational denominator so that calculations may become easier and simplified ones. To do so we will multiply both numerator and denominator by the conjugate of the denominator. So,

\(\frac{1}{4 + \sqrt{2}} \times (\frac{4 - \sqrt{2}}{4 - \sqrt{2}})\)

⟹ \(\frac{4 - \sqrt{2}}{4^{2} - \sqrt{2^{2}}}\)

⟹ \(\frac{4 - \sqrt{2}}{16 - 2}\)

⟹ \(\frac{4 - \sqrt{2}}{14}\)

So the rationalized fraction is: \(\frac{4 - \sqrt{2}}{14}\).


7. Rationalize \(\frac{2}{14 - \sqrt{26}}\).

Solution: 

Since the given fraction contains irrational denominator, so we need to convert it into a rational denominator so that calculations may become easier and simplified ones. To do so we will multiply both numerator and denominator by the conjugate of the denominator. So,

\(\frac{2}{14 - \sqrt{26}} \times \frac{14 + \sqrt{26}}{14 + \sqrt{26}}\)


⟹ \(\frac{2(14 - \sqrt{26})}{14^{2} - \sqrt{26^{2}}}\)

⟹ \(\frac{2(14 - \sqrt{26})}{196 - 26}\)

⟹ \(\frac{2(14 - \sqrt{26})}{170}\)

 So, the rationalized fraction is: \(\frac{2(14 - \sqrt{26})}{170}\).

Irrational Numbers

Definition of Irrational Numbers

Representation of Irrational Numbers on The Number Line

Comparison between Two Irrational Numbers

Comparison between Rational and Irrational Numbers

Rationalization

Problems on Irrational Numbers

Problems on Rationalizing the Denominator

Worksheet on Irrational Numbers





9th Grade Math

From Problems on Irrational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Jan 15, 25 01:54 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  2. Worksheet on Basic Multiplication Facts | Repeated Addition Fact

    Jan 15, 25 12:40 PM

    Worksheet on Basic Multiplication Facts
    Practice some known facts given in the worksheet on basic multiplication facts. The questions are based on the multiplication fact and repeated addition fact. 1. Write the multiplication fact for each

    Read More

  3. Worksheet on Facts about Multiplication | Multiplication Sum | Answers

    Jan 15, 25 01:24 AM

    Facts about Multiplication Work
    Practice the worksheet on facts about multiplication. We know in multiplication, the number being multiplied is called the multiplicand and the number by which it is being multiplied is called the mul…

    Read More

  4. Facts about Multiplication | Multiplicand | Multiplier | Product

    Jan 15, 25 01:03 AM

    We have learnt multiplication of numbers with 2digit multiplier. Now, we will learn more. Let us know some facts about multiplication. 1. In multiplication, the number being multiplied is called the m…

    Read More

  5. Basic Multiplication Facts | Repeated Addition |Multiplication Process

    Jan 15, 25 12:23 AM

    Understanding Multiplication
    Some basic multiplication facts are needed to follow for multiplying numbers. The repeated addition of the same number is expressed by multiplication in short.

    Read More