Problems on Irrational Numbers

Till here we have learnt many concepts regarding irrational numbers. Under this topic we will be solving some problems related to irrational numbers. It will contain problems from all topics of irrational numbers.

Before moving to problems, one should look at the basic concepts regarding the comparison of irrational numbers.

For comparing them, we should always keep in mind that if square or cube roots of two numbers (‘a’ and ‘b’) are to be compared, such that ‘a’ is greater than ‘b’, then a\(^{2}\) will be greater than b\(^{2}\) and a\(^{3}\) will be greater than b\(^{2}\) and so on, i.e., n\(^{th}\) power of ‘a’ will be greater than n\(^{th}\) power of ‘b’. 

The same concept is to be applied for the comparison between rational and irrational numbers. 


So, now let’s have look at some problems given below:

1. Compare √11 and √21.

Solution: 

Since the given numbers are not the perfect square roots so the numbers are irrational numbers. To compare them let us first compare them into rational numbers. So,

(√11)\(^{2}\) = √11 × √11 = 11.

(√21)\(^{2}\) = √21 × √21 = 21.

Now it is easier to compare 11 and 21. 

Since, 21 > 11. So, √21 > √11.


2. Compare √39 and √19.

Solution: 

Since the given numbers are not the perfect square roots of any number, so they are irrational numbers. To compare them, we will first compare them into rational numbers and then perform the comparison. So,

(√39)\(^{2}\) = √39 × √39 = 39.

(√19)\(^{2}\) = √19 × √19 = 19

Now it is easier to compare 39 and 19. Since, 39 > 19.

So,√39 > √19.


3. Compare \(\sqrt[3]{15}\) and \(\sqrt[3]{11}\).

Solution: 

Since the given numbers are not the perfect cube roots. So, to make comparison between them e first need to convert them into rational numbers and then perform the comparison. So,

\((\sqrt[3]{15})^{3}\) = \(\sqrt[3]{15}\) × \(\sqrt[3]{15}\) × \(\sqrt[3]{15}\) = 15.

\((\sqrt[3]{11})^{3}\) = \(\sqrt[3]{11}\) × \(\sqrt[3]{11}\) × \(\sqrt[3]{11}\) = 11.

Since, 15 > 11. So, \(\sqrt[3]{15}\) > \(\sqrt[3]{11}\).


4. Compare 5 and √17.

Solution: 

Among the numbers given, one of them is rational while other one is irrational. So, to make comparison between them, we will raise both of them to them to the same power such that the irrational one becomes rational. So,

(5)\(^{2}\) = 5 × 5 = 25.

(√17)\(^{2}\) = √17 x × √17 = 17.

Since, 25 > 17. So, 5 > √17.


5. Compare 4 and \(\sqrt[3]{32}\).

Solution: 

Among the given numbers to make comparison, one of them is rational while other one is irrational. So, to make comparison both numbers will be raised to the same power such that the irrational one becomes rational. So,

4\(^{3}\)= 4 × 4 × 4 = 64.

\((\sqrt[3]{32})^{3}\) = \(\sqrt[3]{32}\) × \(\sqrt[3]{32}\) × \(\sqrt[3]{32}\) = 32.

Since, 64 > 32. So, 4 > \(\sqrt[3]{32}\).


6. Rationalize \(\frac{1}{4 + \sqrt{2}}\).

Solution: 

Since the given fraction contains irrational denominator, so we need to convert it into a rational denominator so that calculations may become easier and simplified ones. To do so we will multiply both numerator and denominator by the conjugate of the denominator. So,

\(\frac{1}{4 + \sqrt{2}} \times (\frac{4 - \sqrt{2}}{4 - \sqrt{2}})\)

⟹ \(\frac{4 - \sqrt{2}}{4^{2} - \sqrt{2^{2}}}\)

⟹ \(\frac{4 - \sqrt{2}}{16 - 2}\)

⟹ \(\frac{4 - \sqrt{2}}{14}\)

So the rationalized fraction is: \(\frac{4 - \sqrt{2}}{14}\).


7. Rationalize \(\frac{2}{14 - \sqrt{26}}\).

Solution: 

Since the given fraction contains irrational denominator, so we need to convert it into a rational denominator so that calculations may become easier and simplified ones. To do so we will multiply both numerator and denominator by the conjugate of the denominator. So,

\(\frac{2}{14 - \sqrt{26}} \times \frac{14 + \sqrt{26}}{14 + \sqrt{26}}\)


⟹ \(\frac{2(14 - \sqrt{26})}{14^{2} - \sqrt{26^{2}}}\)

⟹ \(\frac{2(14 - \sqrt{26})}{196 - 26}\)

⟹ \(\frac{2(14 - \sqrt{26})}{170}\)

 So, the rationalized fraction is: \(\frac{2(14 - \sqrt{26})}{170}\).

Irrational Numbers

Definition of Irrational Numbers

Representation of Irrational Numbers on The Number Line

Comparison between Two Irrational Numbers

Comparison between Rational and Irrational Numbers

Rationalization

Problems on Irrational Numbers

Problems on Rationalizing the Denominator

Worksheet on Irrational Numbers





9th Grade Math

From Problems on Irrational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perimeter of a Rectangle | How to Find the Perimeter of a Rectangle?

    Apr 25, 24 02:01 PM

    Perimeter of a Rectangle
    We will discuss here how to find the perimeter of a rectangle. We know perimeter of a rectangle is the total length (distance) of the boundary of a rectangle. ABCD is a rectangle. We know that the opp…

    Read More

  2. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 12:54 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More

  3. Perimeter of a Triangle | Perimeter of a Triangle Formula | Examples

    Apr 25, 24 12:53 PM

    Perimeter of a Triangle
    We will discuss here how to find the perimeter of a triangle. We know perimeter of a triangle is the total length (distance) of the boundary of a triangle. Perimeter of a triangle is the sum of length…

    Read More

  4. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  5. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More