Properties of a Rectangle Rhombus and Square

The properties of a rectangle, rhombus and square are discussed here using figure.

Diagonal Properties of a Rectangle

Prove that the diagonals of a rectangle are equal and bisect each other.

Let ABCD be a rectangle whose diagonals AC and BD intersect at the point 0. 

From ∆ ABC and ∆ BAD, 

AB = BA (common) 

∠ABC = ∠BAD (each equal to 90o) 

BC = AD (opposite sides of a rectangle). 

Therefore, ∆ ABC ≅ ∆ BAD (by SAS congruence) 

⇒ AC = BD. 

Hence, the diagonals of a rectangle are equal. 



From ∆ OAB and ∆ OCD,

∠OAB = ∠OCD (alternate angles)

∠OBA = ∠ODC (alternate angles)

AB = CD (opposite sides of a rectangle)

Therefore, ∆OAB ≅ ∆ OCD. (by ASA congruence)

⇒ OA = OC and OB = OD.

This shows that the diagonals of a rectangle bisect each other.

Hence, the diagonals of a rectangle are equal and bisect each other.


Diagonal Properties of a Rhombus

Prove that the diagonals of a rhombus bisect each other at right angles.



Let ABCD be a rhombus whose diagonals AC and BD intersect at the point O.

We know that the diagonals of a parallelogram bisect each other.

Also, we know that every rhombus is a parallelogram.

So, the diagonals of a rhombus bisect each other.

Therefore, OA = OC and OB = OD

From ∆ COB and ∆ COD,

CB = CD (sides of a rhombus)

CO = CO (common).

OB = OD (proved)

Therefore, ∆ COB ≅ ∆ COD (by SSS congruence)

⇒ ∠COB = ∠COD

But, ∠COB + ∠COD = 2 right angles (linear pair)

Therefore, ∠COB = ∠COD = 1 right angle.

Hence, the diagonals of a rhombus bisect each other at right angles.


Diagonal Properties of a Square

Prove that the diagonals of a square are equal and bisect each other at right angles.

We know that the diagonals of a rectangle are equal.

Also, we know that every square is a rectangle.

So, the diagonals of a square are equal.

Again, we know that the diagonals of a rhombus bisect each other at right angles. But, every square is a rhombus.

So, the diagonals of a square bisect each other at right angles.

Hence, the diagonals of a square are equal and bisect each other at right angles.

NOTE 1:

If the diagonals of a quadrilateral are equal then it is not necessarily a rectangle.

In the adjacent figure, ABCD is a quadrilateral in which diagonal AC = diagonal BD, but ABCD is not a rectangle.

NOTE 2:

If the diagonals of a quadrilateral intersect at right angles then it is not necessarily a rhombus.






Parallelogram

Parallelogram

Properties of a Rectangle Rhombus and Square

Problems on Parallelogram

Practice Test on Parallelogram


Parallelogram - Worksheet

Worksheet on Parallelogram








8th Grade Math Practice

From Properties of a Rectangle Rhombus and Square to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 06, 23 01:23 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  3. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More