Properties of a Rectangle Rhombus and Square

The properties of a rectangle, rhombus and square are discussed here using figure.

Diagonal Properties of a Rectangle

Prove that the diagonals of a rectangle are equal and bisect each other.

Let ABCD be a rectangle whose diagonals AC and BD intersect at the point 0. 

From ∆ ABC and ∆ BAD, 

AB = BA (common) 

∠ABC = ∠BAD (each equal to 90o) 

BC = AD (opposite sides of a rectangle). 

Therefore, ∆ ABC ≅ ∆ BAD (by SAS congruence) 

⇒ AC = BD. 

Hence, the diagonals of a rectangle are equal. 



From ∆ OAB and ∆ OCD,

∠OAB = ∠OCD (alternate angles)

∠OBA = ∠ODC (alternate angles)

AB = CD (opposite sides of a rectangle)

Therefore, ∆OAB ≅ ∆ OCD. (by ASA congruence)

⇒ OA = OC and OB = OD.

This shows that the diagonals of a rectangle bisect each other.

Hence, the diagonals of a rectangle are equal and bisect each other.


Diagonal Properties of a Rhombus

Prove that the diagonals of a rhombus bisect each other at right angles.



Let ABCD be a rhombus whose diagonals AC and BD intersect at the point O.

We know that the diagonals of a parallelogram bisect each other.

Also, we know that every rhombus is a parallelogram.

So, the diagonals of a rhombus bisect each other.

Therefore, OA = OC and OB = OD

From ∆ COB and ∆ COD,

CB = CD (sides of a rhombus)

CO = CO (common).

OB = OD (proved)

Therefore, ∆ COB ≅ ∆ COD (by SSS congruence)

⇒ ∠COB = ∠COD

But, ∠COB + ∠COD = 2 right angles (linear pair)

Therefore, ∠COB = ∠COD = 1 right angle.

Hence, the diagonals of a rhombus bisect each other at right angles.


Diagonal Properties of a Square

Prove that the diagonals of a square are equal and bisect each other at right angles.

We know that the diagonals of a rectangle are equal.

Also, we know that every square is a rectangle.

So, the diagonals of a square are equal.

Again, we know that the diagonals of a rhombus bisect each other at right angles. But, every square is a rhombus.

So, the diagonals of a square bisect each other at right angles.

Hence, the diagonals of a square are equal and bisect each other at right angles.

NOTE 1:

If the diagonals of a quadrilateral are equal then it is not necessarily a rectangle.

In the adjacent figure, ABCD is a quadrilateral in which diagonal AC = diagonal BD, but ABCD is not a rectangle.

NOTE 2:

If the diagonals of a quadrilateral intersect at right angles then it is not necessarily a rhombus.






Parallelogram

Parallelogram

Properties of a Rectangle Rhombus and Square

Problems on Parallelogram

Practice Test on Parallelogram


Parallelogram - Worksheet

Worksheet on Parallelogram








8th Grade Math Practice

From Properties of a Rectangle Rhombus and Square to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on 8 Times Table | Printable Multiplication Table | Video

    Mar 18, 25 03:30 PM

    worksheet on multiplication of 8 times table
    Worksheet on 8 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  2. Worksheet on Roman Numerals |Roman Numerals|Symbols for Roman Numerals

    Mar 18, 25 02:47 PM

    Roman Numbers Table
    Practice the worksheet on roman numerals or numbers. This sheet will encourage the students to practice about the symbols for roman numerals and their values. Write the number for the following: (a) V…

    Read More

  3. Conversion of Roman Numeration | Roman Numerals |Hindu Arabic Numerals

    Mar 18, 25 02:12 PM

    We will learn the conversion of Roman numeration. First we will learn how to convert numbers in roman numerals. 1. Convert 579 in roman numerals.

    Read More

  4. Rules of Roman Numeration |Roman Number System|Roman Numeration System

    Mar 18, 25 09:41 AM

    Rules of Roman Numerals
    We will learn about Roman Numeration and its rules. We know that there are seven basic Roman Numerals. They are I, V, X, L, C, D and M. These numerals stand for the number 1, 5, 10, 50, 100, 500

    Read More

  5. Divisible by 2 | Test of Divisibility by 2 |Rules of Divisibility by 2

    Mar 17, 25 04:04 PM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More