Problems on Parallelogram

These are the various types of solved problems on parallelogram.

1. Prove that any two adjacent angles of a parallelogram are supplementary.

Solution:

Let ABCD be a parallelogram

Problems on Parallelogram

Then, AD ∥ BC and AB is a transversal. 

Therefore, A + B = 180° [Since, sum of the interior angles on the same side of the transversal is 180°] 

Similarly, ∠B + ∠C = 180°, ∠C + ∠D = 180° and ∠D + ∠A = 180°. 

Thus, the sum of any two adjacent angles of a parallelogram is 180°. 

Hence, any two adjacent angles of a parallelogram are supplementary. 



2. Two adjacent angles of a parallelogram are as 2 : 3. Find the measure of each of its angles.

Solution:

Let ABCD be a given parallelogram

Problems on Parallelogram

Then, ∠A and ∠B are its adjacent angles.

Let ∠A = (2x)° and ∠B = (3x)°.

Then, ∠A + ∠B = 180° [Since, sum of adjacent angles of a ∥gm is 180°]

⇒ 2x + 3x = 180

⇒ 5x = 180

⇒ x = 36.

Therefore, ∠A = (2 × 36)° = 72° and ∠B = (3 × 36°) = 108°.

Also, ∠B + ∠C = 180° [Since, ∠B and ∠C are adjacent angles]

= 108° + ∠C = 180° [Since, ∠B = 108°]

∠C = (180° - 108°) = 72°.

Also, ∠C + ∠D = 180° [Since, ∠C and ∠D are adjacent angles]

⇒ 72° + ∠D = 180°

⇒ ∠D = (180° - 72°) 108°.

Therefore, ∠A = 72°, ∠B = 108°, ∠C = 72°and ∠D = 108°.



3. In the adjoining figure, ABCD is a parallelogram in which ∠A = 75°. Find the measure of each of the angles ∠B, ∠C and ∠D.

Solution:

It is given that ABCD is a parallelogram in which ∠A = 75°.

Problems on Parallelogram

Since the sum of any two adjacent angles of a parallelogram is 180°,

∠A + ∠B = 180°

⇒ 75° + ∠B = 180°

⇒∠B = (180° - 75°) = 105°

Also, ∠B + ∠C = 180° [Since, ∠B and ∠C are adjacent angles]

⇒ 105° + ∠C = 180°

⇒ ∠C = (180° - 105°) = 75°.

Further, ∠C + ∠D = 180° [Since, ∠C and ∠D are adjacent angles]

⇒ 75° + ∠D = 180°

⇒ ∠D = (180° - 75°) = 105°.

Therefore, ∠B = 105°, ∠C = 75° and ∠D = 105°.



4. In the adjoining figure, ABCD is a parallelogram in which

∠BAD = 75° and ∠DBC = 60°. Calculate:

(i) ∠CDB and (ii) ∠ADB.

Problems on Parallelogram

Solution:

We know that the opposite angles of a parallelogram are equal.

Therefore, ∠BCD = ∠BAD = 75°.

(i) Now, in ∆ BCD, we have

∠CDB + ∠DBC + ∠BCD = 180° [Since, sum of the angles of a triangle is 180°]

⇒ ∠CDB + 60° + 75° = 180°

⇒ ∠CDB + 135° = 180°

⇒ ∠CDB = (180° - 135°) = 45°.

(ii) AD ∥ BC and BD is the transversal.

Therefore, ∠ADB = ∠DBC = 60° [alternate interior angles]

Hence, ∠ADB = 60°.


5. In the adjoining figure, ABCD is a parallelogram in which

∠CAD = 40°, ∠BAC = 35° and ∠COD = 65°.

Calculate: (i) ∠ABD (ii) ∠BDC (iii) ∠ACB (iv) ∠CBD.

Problems on Parallelogram

Solution:

(i) ∠AOB = ∠COD = 65° (vertically opposite angles)

Now, in ∆OAB, we have:

∠OAB + ∠ABO + ∠AOB =180° [Since, sum of the angles of a triangle is 180°]

⇒ 35°+ ∠ABO + 65° = 180°

⇒ ∠ABO + 100° = 180°

⇒ ∠ABO = (180° - 100°) = 80°

⇒ ∠ABD = ∠ABO = 80°.

(ii) AB ∥ DC and BD is a transversal.

Therefore, ∠BDC = ∠ABD = 80° [alternate interior angles]

Hence, ∠BDC = 80°.

(iii) AD ∥ BC and AC is a transversal.

Therefore, ∠ACB = ∠CAD = 40° [alternate interior angles]

Hence, ∠ACB = 40°.

(iv) ∠BCD = ∠BAD = (35° + 40°) = 75° [opposite angles of a parallelogram]

Now, in ∆CBD, we have

∠BDC + ∠BCD + ∠CBD = 180° [sum of the angles of a triangle is 180°]

⇒ 80° + 75° + ∠CBD = 180°

⇒ 155° + ∠CBD = 180°

⇒ ∠CBD = (180° - 155°) = 25°.

Hence, ∠CBD = 25°.



6. In the adjoining figure, ABCD is a parallelogram, AO and BO are the bisectors of ∠A and ∠B respectively. Prove that ∠AOB = 90°.

Problems on Parallelogram

Solution:

We know that the sum of two adjacent angles of a parallelogram is 180°

Therefore, ∠A + ∠B = 180° ……………. (i)

Since AO and BO are the bisectors of ∠A and ∠B, respectively, we have

∠OAB = 1/2∠A and ∠ABO = 1/2∠B.

From ∆OAB, we have

∠OAB + ∠AOB + ∠ABO = 180° [Since, sum of the angles of a triangle is 180°]

⇒ ¹/₂∠A + ∠ABO + ¹/₂∠B = 180°

⇒ ¹/₂(∠A + ∠B) + ∠AOB = 180°

⇒ (¹/₂ × 180°) + ∠AOB = 180° [using (i)]

⇒ 90° + ∠AOB = 180°

⇒ ∠AOB = (180° - 90°) = 90°.

Hence, ∠AOB = 90°.



7. The ratio of two sides of a parallelogram is 4 : 3. If its perimeter is 56 cm, find the lengths of its sides.

Solution:

Let the lengths of two sides of the parallelogram be 4x cm and 3x cm respectively.

Then, its perimeter = 2(4x + 3x) cm = 8x + 6x = 14x cm.

Therefore, 14x = 56 ⇔ x = ⁵⁶/₁₄ = 4.

Therefore, one side = (4 × 4) cm = 16 cm and other side = (3 × 4) cm = 12 cm.



8. The length of a rectangle is 8 cm and each of its diagonals measures 10 cm. Find its breadth.

Solution:

Let ABCD be the given rectangle in which length AB = 8 cm and diagonal AC = 10 cm.

Problems on Parallelogram

Since each angle of a rectangle is a right angle, we have

∠ABC = 90°.

From right ∆ABC, we have

AB² + BC² = AC² [Pythagoras’ Theorem]

⇒ BC² = (AC² - AB²) = {(1O)² - (8)²} = (100 - 64) = 36

⇒ BC = √36 = 6cm.

Hence, breadth = 6 cm.



9. In the adjacent figure, ABCD is a rhombus whose diagonals AC and BD intersect at a point O. If side AB = 10cm and diagonal BD = 16 cm, find the length of diagonal AC.

Problems on Parallelogram

Solution:

We know that the diagonals of a rhombus bisect each other at right angles

Therefore, BO = ¹/₂BD = (¹/₂ × 16) cm = 8 cm, AB = 10 cm and ∠AOB = 90°.

From right ∆OAB, we have

AB² = AO² + BO²

⇒ AO² = (AB² – BO²) = {(10) ² - (8)²} cm²

                             = (100 - 64) cm²

                             = 36 cm²

     ⇒ AO = √36 cm = 6 cm.

Therefore, AC = 2 × AO = (2 × 6) cm = 12 cm.



Parallelogram

Parallelogram

Properties of a Rectangle Rhombus and Square

Problems on Parallelogram

Practice Test on Parallelogram


Parallelogram - Worksheet

Worksheet on Parallelogram







8th Grade Math Practice

From Problems on Parallelogram to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Least Common Factor (LCM) | Factorization & Division Method

    Mar 25, 25 02:39 AM

    L.C.M. of 20, 30, 36 by Division Method
    We already familiar with the least common multiple which is the smallest common multiple of the numbers. The least (lowest) common multiple of two or more numbers is exactly divisible by each of the g…

    Read More

  2. 5th Grade Highest Common Factor | HCF | GCD|Prime Factorization Method

    Mar 24, 25 11:58 PM

    Find the H.C.F. of 12, 36, 48
    The highest common factor (H.C.F.) of two or more numbers is the highest or greatest common number or divisor which divides each given number exactly. Hence, it is also called Greatest Common Divisor…

    Read More

  3. 5th Grade Factors and Multiples | Definitions | Solved Examples | Math

    Mar 23, 25 02:39 PM

    Prime Factor of 312
    Here we will discuss how factors and multiples are related to each other in math. A factor of a number is a divisor which divides the dividend exactly. A factor of a number which is a prime number is…

    Read More

  4. Adding 2-Digit Numbers | Add Two Two-Digit Numbers without Carrying

    Mar 23, 25 12:43 PM

    Adding 2-Digit Numbers Using an Abacus
    Here we will learn adding 2-digit numbers without regrouping and start working with easy numbers to get acquainted with the addition of two numbers.

    Read More

  5. Worksheet on 12 Times Table | Printable Multiplication Table | Video

    Mar 23, 25 10:28 AM

    worksheet on multiplication of 12 times table
    Worksheet on 12 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More