Method of L.C.M.

We will discuss here about the method of l.c.m. (least common multiple).

1. Let us consider the numbers 8, 12 and 16.

Multiples of 8 are → 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, ......

Multiples of 12 are → 12, 24, 36, 48, 60, 72, 84, 96, 108, 120, 132, ......

Multiples of 16 are → 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176,  ......

The common multiple of 8, 12, 16 are 78, 96, ......

The least common multiple of 8, 12 and 16 is 48. (Smallest common multiple)

In short, the lowest common factor is expressed as L.C.M.

2. Find the L.C.M. of 3 and 4.

Multiples of 3 = 3, 6, 9, 12, 15, 18, 21, 24, ............

Multiples of 4 = 4, 8, 12, 16, 20, 24, 28, ............

Common multiples of 3 and 4 = 12, 24, ............

Least common multiple of 3 and 4 = 12.


3. Find the L.C.M. of 6 and 12.

Multiples of 6 = 6, 12, 18, 24, 30, 36, 42, 48, ............

Multiples of 12 = 12243648, 60, 72, 84, ............

Common multiples of 6 and 12 = 12, 24, 36, 48, ............

Least common multiple of 6 and 12 = 12.

 


Finding L.C.M.

Least Common Multiple (L.C.M.) by Prime Factorisation Method:

To find the L.C.M. we find prime factors of the given numbers.

Remember, we consider common prime factors only.


Solved Examples:

1. Find the L.C.M. of 12, 16 and 24.

First we find the prime factors of the given numbers.

Method of L.C.M.





12 = 2 × 2 × 3

16 = 2 × 2 × 2 × 2

24 = 2 × 2 × 2 × 2 × 3

(2 comes maximum 4 times and 3 comes maximum once only.)

L.C.M. = 2 × 2 × 2 × 2 × 3

= 48 which is the product of their prime factors.


2. Find the L.C.M. of 10 and 16.

10 = 2 × 5

16 = 2 × 2 × 2 × 2

Common factor = 2

Other factors = 2, 2, 2, 5

     2 | 10

           5

     2 | 16

     2 |  8

     2 |  4

          2 

Therefore, L.C.M. = 2 × 2 × 2 × 2 × 5 (common factor × other factors)

                          = 80


3. Find the L.C.M. of 20 and 25.

20 = 2 × 2 × 5

25 = 5 × 5

Common factor = 5

Other factors = 2, 2, 5

     2 | 20

     2 | 10

           5

     5 | 25

          5 

Therefore, L.C.M. = 5 × 2 × 2 × 5 (common factor × other factors)

                          = 100


4. Find the L.C.M. of 16 and 24.

16 = 2 × 2 × 2 × 2

24 = 2 × 2 × 2 × 3

Common factor = 2, 2, 2

Other factors = 2, 3

     2 | 16

     2 |  8

     2 |  4

          2 

     2 | 24

     2 | 12

     2 |  6

          3 

Therefore, L.C.M. = 2 × 2 × 2 × 2 × 3 (common factor × other factors)

                          = 48


Least Common Multiple (L.C.M.) by Division Method:

We can also find the L.C.M. of the given numbers by dividing all the numbers at the same time by a number that divides at least two of the given numbers.

Find the L.C.M.

1. When a number is not exactly divisible, we write the number itself below the line.

2. When we cannot divide the numbers by a common factor exactly we discontinue dividing the numbers.

L.C.M. = 2 × 2 × 2 × 3 × 2 = 48


Note:

The product of L.C.M. and H.C.F. of two numbers is also the product of the numbers.

For example, the L.C.M. of 7 and 14 is 14 and the H.C.F. of 7 and 14 = 7. We see that the product of 7 and 14 also the product of L.C.M. and H.C.F. of 7 and 14.


1. Find the L.C.M. of 25 and 45.

             Steps:

L.C.M. of 25 and 45

Divide 25 and 45 by 5.

25 ÷ 5 = 5; 45 ÷ 5 = 9

5 and 9 have no common factor.

Stop the division.

Therefore, L.C.M. = 5 × 5 × 9

                          = 225


2. Find the L.C.M. of 40, 68 and 72.

L.C.M. of 40, 68 and 72

             Steps:

Divide 40, 68 and 72 by 2.

40 ÷ 2 = 20; 68 ÷ 2 = 34; 72 ÷ 2 = 36

Divide 20, 34 and 36 by 2.

20 ÷ 2 = 10; 34 ÷ 2 = 17; 36 ÷ 2 = 18

10, 17 and 18 do not have a common factor. But 10 and 18 have 2 as a common factor.

Divide 10 and 18 by 2, leaving 17 as it is.

10 ÷ 2 = 5; 18 ÷ 2 = 9

5, 17 and 9 do not have a common factor.

Stop the division.

Therefore, L.C.M. = 2 × 2 × 2 × 5 × 17 × 9

                                  = 6120


Questions and Answers on Method of LCM:

I. Find the L.C.M. of the following by prime factorisation method.

(i) 30, 36

(ii) 12, 15

(iii) 5, 7

(iv) 15, 30

(v) 42, 72

(vi) 12, 48

(vii) 60, 75

(viii) 25, 150

(ix) 64, 128

(x) 60, 108


Answer:

I. (i) 180

(ii) 60

(iii) 35

(iv) 30

(v) 504

(vi) 48

(vii) 300

(viii) 150

(ix) 128

(x) 540

 

II. Find the L.C.M. of the following by division method.

(i) 27, 84

(ii) 16, 32

(iii) 12, 15

(iv) 25, 30

(v) 60, 70

(vi) 30, 18, 60

(vii) 88, 64, 96

(viii) 48, 96, 144

(ix) 26, 28, 24

(x) 16, 12, 20


Answer:

II. (i) 756

(ii) 32

(iii) 60

(iv) 150

(v) 420

(vi) 180

(vii) 2112

(viii) 288

(ix) 2184

(x) 240


III. Find the L.C.M. of the following numbers by listing the multiples.

(i) 24, 36

(ii) 12, 18

(iii) 10, 20, 40

(iv) 27, 108

(v) 63, 84


Answer:

III. (i) 72

(ii) 36

(iii) 40

(iv) 108

(v) 252





4th Grade Math Activities

From Method of L.C.M. to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 24, 24 04:33 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  2. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  3. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More

  4. Numerator and Denominator of a Fraction | Numerator of the Fraction

    Feb 24, 24 04:09 PM

    What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.

    Read More

  5. Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

    Feb 24, 24 10:59 AM

    List of Roman Numerals Chart
    How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…

    Read More