Inverse Variation Using Method of Proportion

Now we will learn how to solve inverse variations using method of proportion.

We know, the two quantities may be linked in such a way that if one increases, other decreases. If one decreases, the other increases.


Some situations of inverse variation using method of proportion:

● More men at work, less time taken to finish the work.

● More speed, less time is taken to cover the same distance.


Solved examples on inverse variations using method of proportion:

1. If 63 workers can do a piece of work in 42 days, then 27 workers will complete the same work in how many days?

Solution:         

This is a situation of inverse variation, now we solve using method of proportion.  

Less men at work means more days are taken to complete the work.

Number of workers

Number of Days

63                27

42                 x

Since, the two quantities vary inversely

Therefore, 63 × 42 = 27 × x

⇒ (63 × 42)/27 = x

⇒ x = 98 days

Therefore, 27 workers can complete the same work in 98 days.


2. In a summer camp there is enough food for 250 students for 21 days. If 100 more students join the camp, how many days will the food last?

Solution:

This is a situation of inverse variation, now we solve using method of proportion.  

More students means food lasts for less days.

(Here, the two quantities vary inversely)

Number of Students

Number of Days

250                350

 21                  x

Since, the two quantities vary inversely

Therefore, 250 × 21 = 350 × x

So, x = (250 × 21)/350

⇒ x = 15 days

Therefore, for 350 students food lasts for 15 days.

3. Carol starts at 9:00 am by bicycle to reach office. She cycles at the speed of 8 km/hour and reaches the office at 9:15 am. By how much should she increase the speed so that she can reach the office at 9:10 am?

Solution:

This is a situation of inverse variation, now we solve using method of proportion.  

More the speed, less will be the time taken to cover the given distance.

(Here, the two quantities vary inversely)

Time (in minutes)

Speed (in km/hr)

15          10

 8           x

Since, the two quantities vary inversely

Therefore, 15 × 8 = 10 × x

So, x = (15 × 8)/10

Therefore, in 10 minutes she reaches the office at the speed of 12 km/hr.


4. 25 labours can complete a work in 51 days. How many labours will complete the same work in 15 days?

Solution:

This is a situation of inverse variation, now we solve using method of proportion.  

Less days, more labours at work.

(Here, the two quantities vary inversely)

Number of Days

Number of labours

51          15

25           x

Since, the two quantities vary inversely

Therefore, 51 × 25 = 15 × x

So, x = (51 × 25)/15

Therefore, to complete the work in 15 days, there must be 85 labours at work.

Problems Using Unitary Method

Situations of Direct Variation

Situations of Inverse Variation

Direct Variations Using Unitary Method

Direct Variations Using Method of Proportion

Inverse Variation Using Unitary Method

Inverse Variation Using Method of Proportion

Problems on Unitary Method using Direct Variation

Problems on Unitary Method Using Inverse Variation

Mixed Problems Using Unitary Method






7th Grade Math Problems

From Inverse Variation Using Method of Proportion to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Properties of Division | Division of Property Overview|Math Properties

    Jan 22, 25 01:30 AM

    Properties of Division
    The properties of division are discussed here: 1. If we divide a number by 1 the quotient is the number itself. In other words, when any number is divided by 1, we always get the number itself as the…

    Read More

  2. Terms Used in Division | Dividend | Divisor | Quotient | Remainder

    Jan 22, 25 12:54 AM

    Divide 12 Candies
    The terms used in division are dividend, divisor, quotient and remainder. Division is repeated subtraction. For example: 24 ÷ 6 How many times would you subtract 6 from 24 to reach 0?

    Read More

  3. Divide on a Number Line | Various Division Problems | Solved Examples

    Jan 22, 25 12:41 AM

    How to divide on a number line? Learn to divide using number line to find the quotient. Solved examples to show divide on a number line: 1. Solve 14 ÷ 7 Solution: 7 is subtracted repeatedly

    Read More

  4. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 12:18 AM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More

  5. Division Sharing and Grouping | Facts about Division | Basic Division

    Jan 21, 25 08:06 AM

    Sharing and Grouping
    We will learn division sharing and grouping. Share eight strawberries between four children. Let us distribute strawberries equally to all the four children one by one.

    Read More

Worksheet on Direct Variation using Unitary Method

Worksheet on Direct variation using Method of Proportion

Worksheet on Word Problems on Unitary Method

Worksheet on Inverse Variation Using Unitary Method

Worksheet on Inverse Variation Using Method of Proportion