Inverse Variation Using Method of Proportion

Now we will learn how to solve inverse variations using method of proportion.

We know, the two quantities may be linked in such a way that if one increases, other decreases. If one decreases, the other increases.


Some situations of inverse variation using method of proportion:

● More men at work, less time taken to finish the work.

● More speed, less time is taken to cover the same distance.


Solved examples on inverse variations using method of proportion:

1. If 63 workers can do a piece of work in 42 days, then 27 workers will complete the same work in how many days?

Solution:         

This is a situation of inverse variation, now we solve using method of proportion.  

Less men at work means more days are taken to complete the work.

Number of workers

Number of Days

63                27

42                 x

Since, the two quantities vary inversely

Therefore, 63 × 42 = 27 × x

⇒ (63 × 42)/27 = x

⇒ x = 98 days

Therefore, 27 workers can complete the same work in 98 days.


2. In a summer camp there is enough food for 250 students for 21 days. If 100 more students join the camp, how many days will the food last?

Solution:

This is a situation of inverse variation, now we solve using method of proportion.  

More students means food lasts for less days.

(Here, the two quantities vary inversely)

Number of Students

Number of Days

250                350

 21                  x

Since, the two quantities vary inversely

Therefore, 250 × 21 = 350 × x

So, x = (250 × 21)/350

⇒ x = 15 days

Therefore, for 350 students food lasts for 15 days.

3. Carol starts at 9:00 am by bicycle to reach office. She cycles at the speed of 8 km/hour and reaches the office at 9:15 am. By how much should she increase the speed so that she can reach the office at 9:10 am?

Solution:

This is a situation of inverse variation, now we solve using method of proportion.  

More the speed, less will be the time taken to cover the given distance.

(Here, the two quantities vary inversely)

Time (in minutes)

Speed (in km/hr)

15          10

 8           x

Since, the two quantities vary inversely

Therefore, 15 × 8 = 10 × x

So, x = (15 × 8)/10

Therefore, in 10 minutes she reaches the office at the speed of 12 km/hr.


4. 25 labours can complete a work in 51 days. How many labours will complete the same work in 15 days?

Solution:

This is a situation of inverse variation, now we solve using method of proportion.  

Less days, more labours at work.

(Here, the two quantities vary inversely)

Number of Days

Number of labours

51          15

25           x

Since, the two quantities vary inversely

Therefore, 51 × 25 = 15 × x

So, x = (51 × 25)/15

Therefore, to complete the work in 15 days, there must be 85 labours at work.

Problems Using Unitary Method

Situations of Direct Variation

Situations of Inverse Variation

Direct Variations Using Unitary Method

Direct Variations Using Method of Proportion

Inverse Variation Using Unitary Method

Inverse Variation Using Method of Proportion

Problems on Unitary Method using Direct Variation

Problems on Unitary Method Using Inverse Variation

Mixed Problems Using Unitary Method






7th Grade Math Problems

From Inverse Variation Using Method of Proportion to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Successor and Predecessor | Successor of a Whole Number | Predecessor

    May 24, 24 06:42 PM

    Successor and Predecessor of a Whole Number
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More

  2. Counting Natural Numbers | Definition of Natural Numbers | Counting

    May 24, 24 06:23 PM

    Natural numbers are all the numbers from 1 onwards, i.e., 1, 2, 3, 4, 5, …... and are used for counting. We know since our childhood we are using numbers 1, 2, 3, 4, 5, 6, ………..

    Read More

  3. Whole Numbers | Definition of Whole Numbers | Smallest Whole Number

    May 24, 24 06:22 PM

    The whole numbers are the counting numbers including 0. We have seen that the numbers 1, 2, 3, 4, 5, 6……. etc. are natural numbers. These natural numbers along with the number zero

    Read More

  4. Math Questions Answers | Solved Math Questions and Answers | Free Math

    May 24, 24 05:37 PM

    Math Questions Answers
    In math questions answers each questions are solved with explanation. The questions are based from different topics. Care has been taken to solve the questions in such a way that students

    Read More

  5. Estimating Sum and Difference | Reasonable Estimate | Procedure | Math

    May 24, 24 05:09 PM

    Estimating Sum or Difference
    The procedure of estimating sum and difference are in the following examples. Example 1: Estimate the sum 5290 + 17986 by estimating the numbers to their nearest (i) hundreds (ii) thousands.

    Read More

Worksheet on Direct Variation using Unitary Method

Worksheet on Direct variation using Method of Proportion

Worksheet on Word Problems on Unitary Method

Worksheet on Inverse Variation Using Unitary Method

Worksheet on Inverse Variation Using Method of Proportion