Subscribe to our YouTube channel for the latest videos, updates, and tips.


Inverse Variation Using Method of Proportion

Now we will learn how to solve inverse variations using method of proportion.

We know, the two quantities may be linked in such a way that if one increases, other decreases. If one decreases, the other increases.


Some situations of inverse variation using method of proportion:

● More men at work, less time taken to finish the work.

● More speed, less time is taken to cover the same distance.


Solved examples on inverse variations using method of proportion:

1. If 63 workers can do a piece of work in 42 days, then 27 workers will complete the same work in how many days?

Solution:         

This is a situation of inverse variation, now we solve using method of proportion.  

Less men at work means more days are taken to complete the work.

Number of workers

Number of Days

63                27

42                 x

Since, the two quantities vary inversely

Therefore, 63 × 42 = 27 × x

⇒ (63 × 42)/27 = x

⇒ x = 98 days

Therefore, 27 workers can complete the same work in 98 days.


2. In a summer camp there is enough food for 250 students for 21 days. If 100 more students join the camp, how many days will the food last?

Solution:

This is a situation of inverse variation, now we solve using method of proportion.  

More students means food lasts for less days.

(Here, the two quantities vary inversely)

Number of Students

Number of Days

250                350

 21                  x

Since, the two quantities vary inversely

Therefore, 250 × 21 = 350 × x

So, x = (250 × 21)/350

⇒ x = 15 days

Therefore, for 350 students food lasts for 15 days.

3. Carol starts at 9:00 am by bicycle to reach office. She cycles at the speed of 8 km/hour and reaches the office at 9:15 am. By how much should she increase the speed so that she can reach the office at 9:10 am?

Solution:

This is a situation of inverse variation, now we solve using method of proportion.  

More the speed, less will be the time taken to cover the given distance.

(Here, the two quantities vary inversely)

Time (in minutes)

Speed (in km/hr)

15          10

 8           x

Since, the two quantities vary inversely

Therefore, 15 × 8 = 10 × x

So, x = (15 × 8)/10

Therefore, in 10 minutes she reaches the office at the speed of 12 km/hr.


4. 25 labours can complete a work in 51 days. How many labours will complete the same work in 15 days?

Solution:

This is a situation of inverse variation, now we solve using method of proportion.  

Less days, more labours at work.

(Here, the two quantities vary inversely)

Number of Days

Number of labours

51          15

25           x

Since, the two quantities vary inversely

Therefore, 51 × 25 = 15 × x

So, x = (51 × 25)/15

Therefore, to complete the work in 15 days, there must be 85 labours at work.

Problems Using Unitary Method

Situations of Direct Variation

Situations of Inverse Variation

Direct Variations Using Unitary Method

Direct Variations Using Method of Proportion

Inverse Variation Using Unitary Method

Inverse Variation Using Method of Proportion

Problems on Unitary Method using Direct Variation

Problems on Unitary Method Using Inverse Variation

Mixed Problems Using Unitary Method






7th Grade Math Problems

From Inverse Variation Using Method of Proportion to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  2. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  3. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  4. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  5. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 15, 25 05:12 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More

Worksheet on Direct Variation using Unitary Method

Worksheet on Direct variation using Method of Proportion

Worksheet on Word Problems on Unitary Method

Worksheet on Inverse Variation Using Unitary Method

Worksheet on Inverse Variation Using Method of Proportion