# Four Digit Numbers

We have learned one, two and three digits numbers.

Now, we will study 4-digit numbers.

We add 1 to 999 to get the smallest four digit number. eg. 999 + 1 = 1000.

What are Four Digit Numbers?

We may divide 4-digit numbers in 9 groups.

(i) 1000 to 1999 (one thousand to one thousand nine hundred ninety nine)

(ii) 2000 to 2999 (two thousand to two thousand nine hundred ninety nine)

(iii) 3000 to 3999 (three thousand to three thousand nine hundred ninety nine)

(iv) 4000 to 4999 (four thousand to four thousand nine hundred ninety nine)

(v) 5000 to 5999 (five thousand to five thousand nine hundred ninety nine)

(vi) 6000 to 6999 (six thousand to six thousand nine hundred ninety nine)

(vii) 7000 to 7999 (seven thousand to seven thousand nine hundred ninety nine)

(viii) 8000 to 8999 (eight thousand to eight thousand nine hundred ninety nine)

(ix) 9000 to 9999 (nine thousand to nine thousand nine hundred ninety nine)

Note: Four digit numbers begin with 1000.

Four Digits Numbers in Thousands:

If all the numbers of one digit, then two digits and then three digits are placed step by step to the right of 1 Thousand according to their place values, the numbers from 1001 to 1999 are formed.

1000, 1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1023, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 10144, 1045, 1046, 1047, 1048, 1049, 1050, 1051, 1052, 1053, 1054, 1055, 1056, 1057, 1058, 1059, 1060, 1061, 1062, 1063, 1064, 1065, 1066, 1067, 1068, 1069, 1070, 1071, 1072, 1073, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1086, 1087, 1088, 1089, 1090, 1091, 1092, 1093, 1094, 1095, 1096, 1097, 1098, 1099, 1110, 1111, …………………., 1199, 1200, …………………., 1299, 1300, 1301, …………………………., 1399, 1400, …………………, 1499, 1500, 1501, …………………., 1899, 1900, 1901, ………………….., 1921, …………………., 1971, …………………., 1981, ………………………, 1991, …………………., 1999. Similarly, 2000, …………….., 2199, ………………….., 2299, ……………………, 2799, ……………………, 2899, ………………….., 2999 are formed. Thus, we reach upto 3999, ……………….., 4999, …………………, 5999, …………………, 6999, …………………, 7999, …………………, 8999, ………………….., 9999.

Shown below are some four digit numbers on the abacus:

 2354 Two thousand three hundred fifty four 5241 Five thousand two hundred forty one

Mike has 999 lollipops. He has made 9 packets of 100 lollipops in each. He is now left with 99 lollipops. How many more lollipops does Mike need to make another packet of 100 lollipops?

99 + 1 = 100

By having 1 more lollipop, Mike can make another packet of 100 lollipops.

Mike has now 10 packets of 100 lollipops in each.

 10 hundreds = 1 thousand = 1000Thus, Mike has 1000 lollipops in all. 1000 is a 4-digit number and is read as ‘one thousand’. 1 packet = 100 lollipops2 packets = 100 + 100 = 200 lollipops3 packets = 200 + 100 = 300 lollipops4 packets = 300 + 100 = 400 lollipops5 packets = 400 + 100 = 500 lollipops6 packets = 500 + 100 = 600 lollipops7 packets = 600 + 100 = 700 lollipops8 packets = 700 + 100 = 800 lollipops9 packets = 800 + 100 = 900 lollipops

1000 is the smallest 4-digit number. 9999 is the largest 4-digit number.

 DigitOne-digitTwo-digitThree-digitFour-digit Largest Number9999999999 Smallest Number0101001000

9 + 1 = 10

99 + 1 = 100

999 + 1 = 1000

Let us now learn some 4-digit number names.

 1325 is read as ‘One thousand three hundred twenty-five’ 1538 is read as ‘One thousand five hundred thirty-eight’ 1243 is read as ‘One thousand two hundred forty-three’ 1456 is read as ‘One thousand four hundred fifty-six’ 1513 is read as ‘One thousand five hundred thirteen’ 1204 is read as ‘One thousand two hundred four’ 1331 is read as ‘One thousand three hundred thirty-one’ 1355 is read as ‘One thousand three hundred fifty-five’ 2043 is read as ‘Two thousand forty-three’

Note: 1. The largest 4-digit number is 9999.

2. The smallest 4-digit number is 1000.

Forming 4-Digit Numbers:

4-Digit Numbers in Expand Form and Short Form:

 (i) 1 thousand + 4 hundreds + 6 tens + 4 ones(ii) 2 thousand + 6 hundreds + 3 tens + 1 one(iii) 5 thousand + 1 hundred + 3 tens + 2 ones(iv) 9 thousand + 9 hundreds + 9 tens + 9 ones(v) 4 thousands + 5 hundreds + 0 tens + 3 ones(vi) 6 thousands + 3 hundreds + 0 tens + 0 ones(vii) 7 thousands + 2 hundreds + 2 tens + 5 ones(viii) 3 thousands + 0 hundred + 1 ten + 6 ones(ix) 8 thousands + 7 hundreds + 4 tens + 7 ones(x) 1 thousand + 8 hundreds + 5 tens + 8 ones(xi) 2 thousands + 5 hundreds + 7 tens + 9 ones(xii) 1 thousand + 4 hundreds + 6 tens + 9 ones = 1000 + 400 + 60 + 4= 2000 + 600 + 30 + 1= 5000 + 100 + 30 + 2= 9000 + 900 + 90 + 9= 4000 + 500 + 0 + 3= 6000 + 300 + 0 + 0= 7000 + 200 + 20 + 5= 3000 + 0 + 10 + 6= 8000 + 700 + 40 + 7= 1000 + 800 + 50 + 8= 2000 + 500 + 70 + 9= 1000 + 400 + 60 + 9 = 1460 = 2631 = 5132 = 9999 = 4503 = 6300 = 7225 = 3016 = 8747 = 1858 = 2579 = 1469

Forms of Numbers:

I. Write in the short forms. One has been done for you.

 (i) 2000 + 700 + 50 + 8  (ii) 3000 + 400 + 60 + 2(iii) 1000 + 300 + 40 + 5(iv) 4000 + 200 + 30 + 5(v) 6000 + 200 + 70 + 9(vi) 5000 + 800 + 60 + 7(vii) 7000 + 100 + 60 + 5(viii) 8000 + 900 + 80 + 4(ix) 9000 + 500 + 30 + 6(x) 3000 + 800 + 00 + 2 = 2758 = ___________ = ___________ = ___________ = ___________ = ___________ = ___________ = ___________ = ___________ = ___________

1. (ii) 3462

(iii) 1345

(iv) 4235

(v) 6279

(vi) 5867

(vii) 7165

(viii) 8984

(ix) 9536

(x) 3802

II. Write in the long forms. One has been done for you.

 (i) 7684(ii) 5053(iii) 6734(iv) 8635(v) 9896(vi) 3338(vii) 4725(viii) 2431(ix) 1876(x) 3707(xi) 2980(xii) 8579 = 7000 + 600 + 80 + 4 = __________________ = __________________ = __________________ = __________________ = __________________ = __________________ = __________________ = __________________ = __________________ = __________________ = __________________

2. (ii) 5000 + 0 + 50 + 3

(iii) 6000 + 700 + 30 + 4

(iv) 8000 + 600 + 30 + 5

(v) 9000 + 800 + 90 + 6

(vi) 3000 + 300 + 30 + 8

(vii) 4000 + 700 + 20 + 5

(viii) 2000 + 400 + 30 + 1

(ix) 1000 + 800 + 70 + 6

(x) 3000 + 700 + 0 + 7

(xi) 2000 + 900 + 80 + 0

(xii) 8000 + 500 + 70 + 9

Writing Numbers:

III. Write in numbers:

(i) Five thousand eight hundred and fifty three

(ii) Nine thousand and two hundred

(iii) Two thousand eight hundred and four

(iv) Six thousand five hundred and ten

(v) Three thousand seven hundred and ninety five

(vi) One thousand nine hundred and forty two

(vii) Four thousand six hundred and eighty six

(viii) Seven thousand four hundred and sixty six

(ix) Eight thousand three hundred and seventy nine

(x) Three thousand nine hundred and thirty four

(xi) Two thousand five hundred and eighty seven

(xii) Four thousand two hundred and thirty five

(xiii) Seven thousand nine hundred and eight

III. (i) 5853

(ii) 9200

(iii) 2804

(iv) 6510

(v) 3795

(vi) 1942

(vii) 4686

(viii) 7466

(ix) 8379

(x) 3934

(xi) 2587

(xii) 4235

(xiii) 7908

IV. Write the number names:

(i) 1530

(ii) 9217

(iii) 5645

(iv) 4872

(v) 3356

(vi) 2968

(vii) 1530

(viii) 6729

(ix) 8800

(x) 2874

(xi) 3507

(xii) 4235

(xiii) 6879

IV. (i) One thousand five hundred thirty

(ii) Nine thousand two hundred seventeen

(iii) Five thousand six hundred forty five

(iv) Four thousand eight hundred seventy two

(v) Three thousand three hundred fifty six

(vi) Two thousand nine hundred sixty eight

(vii) One thousand five hundred thirty

(viii) Six thousand seven hundred twenty nine

(ix) Eight thousand eight hundred

(x) Two thousand eight hundred seventy four

(xi) Three thousand five hundred seven

(xii) Four thousand two hundred thirty five

(xiii) Six thousand eight hundred seventy nine

Numbers Fun:

V. Write forward consecutive numbers:

(i) 1001, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

(ii) 1340, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

(iii) 2550, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

(iv) 3025, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

(v) 4386, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

(vi) 5991, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

(vii) 6033, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

(viii) 7732, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

V. (i) 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009, 1010

(ii) 1341, 1342, 1343, 1344, 1345, 1346, 1347, 1348, 1349

(iii) 2551, 2552, 2553, 2554, 2555, 2556, 2557, 2558, 2559

(iv) 3026, 3027, 3028, 3029, 3030, 3031, 3032, 3033, 3034

(v) 4387, 4388, 4389, 4390, 4391, 4392, 4393, 4394, 4395

(vi) 5992, 5993, 5994, 5995, 5996, 5997, 5998, 5999, 6000

(vii) 6034, 6035, 6036, 6037, 6038, 6039, 6040, 6041, 6042

(viii) 7733, 7734, 7735, 7736, 7737, 7738, 7739, 7740, 7741

VI. Write backwards consecutive numbers

(i) 1068, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

(ii) 6880, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

(iii) 9999, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

(iv) 5119, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

(v) 3425, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

(vi) 2500, ………….., ………….., ………….., ………….., ………….., ………….., ………….., ………….., …………..

VI. (i) 1067, 1066, 1065, 1064, 1063, 1062, 1061, 1060, 1059

(ii) 6879, 68786877, 6876, 6875, 6874, 6873, 6872, 6871

(iii) 9998, 9997, 9996, 9995, 9994, 9993, 9992, 9991, 9990

(iv) 5118, 5117, 5116, 5115, 5114, 5113, 5112, 5111, 5110

(v) 3424, 3423, 3422, 3421, 3420, 3419, 3418, 3417, 3416

(vi) 2499, 2498, 2497, 2496, 2495, 2494, 2493, 2492, 2491

VII. Complete the patterns:

(i) 8002, 8004, 8006, ………….., ………….., ………….., ………….., ………….., ………….., …………..

(ii) 9015, 9020, 9025, ………….., ………….., ………….., ………….., ………….., ………….., …………..

(iii) 7005, 7010, 7015, ………….., ………….., ………….., ………….., ………….., ………….., …………..

(iv) 6340, 6350, 6360, ………….., ………….., ………….., ………….., ………….., ………….., …………..

(v) 5000, 5006, 5012, ………….., ………….., ………….., ………….., ………….., ………….., …………..

(vi) 1100, 1200, 1300, ………….., ………….., ………….., ………….., ………….., ………….., …………..

VII. (i) 8004, 8006, 8008, 8010, 8012, 8014, 8016, 8018, 8020

(ii) 9020, 9025, 9030, 9035, 9040, 9045, 9050, 9055, 9060

(iii) 7010, 7015, 7020, 7025, 7030, 7035, 7040, 7045, 7050

(iv) 6350, 6360, 6370, 6380, 6390, 6400, 6410, 6420, 6430

(v) 5006, 5012, 5018, 5024, 5030, 5036, 5042, 5048, 5054

(vi) 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000

VIII. Write the successor numbers (the number after):

(i) 4530 …………..

(ii) 6625 …………..

(iii) 2836 …………..

(iv) 1014 …………..

(v) 8590 …………..

(vi) 5417 …………..

(vii) 6879 …………..

(viii) 5792 …………..

(ix) 7876 …………..

(x) 5327 …………..

(xi) 9891 …………..

(xii) 5109 …………..

(xiii) 1999 …………..

(xiv) 3579 …………..

(xv) 4284 …………..

(xvi) 2029 …………..

VIII. (i) 4531

(ii) 6626

(iii) 2837

(iv) 1015

(v) 8591

(vi) 5418

(vii) 6880

(viii) 5793

(ix) 7877

(x) 5328

(xi) 9892

(xii) 5110

(xiii) 1100

(xiv) 3580

(xv) 4285

(xvi) 2030

IX. Write the predecessors numbers (the number before)

(i) ………….. 3560

(ii) ………….. 5871

(iii) ………….. 9090

(iv) ………….. 8099

(v) ………….. 7418

(vi) ………….. 3464

(vii) ………….. 8254

(viii) ………….. 2726

(ix) ………….. 5381

(x) ………….. 7002

(xi) ………….. 3004

(xii) ………….. 3507

(xiii) …………..  6231

(xiv) ………….. 4117

(xv) ………….. 1990

(xvi) ………….. 2001

IX. (i) 3559

(ii) 5870

(iii) 9089

(iv) 8098

(v) 7417

(vi) 3463

(vii) 8253

(viii) 2725

(ix) 5380

(x) 7001

(xi) 3003

(xii) 3506

(xiii) 6230

(xiv) 4116

(xv) 1989

(xvi) 2000

X. Write the numbers before and after:

(i) ………….. 1995 …………..

(ii) ………….. 2010 …………..

(iii) ………….. 7328 …………..

(iv) ………….. 5609 …………..

(v) ………….. 8003 …………..

(vi) ………….. 9320 …………..

(vii) …………..  6037 …………..

(viii) ………….. 5469 …………..

(ix) ………….. 7452 …………..

(x) ………….. 4230 …………..

(xi) ………….. 3000 …………..

(xii) ………….. 7989 …………..

X. (i) 1994; 1996

(ii) 2009; 2011

(iii) 7327; 7329

(iv) 5608; 5610

(v)8002; 8004

(vi) 9319; 9321

(vii) 6036; 6038

(viii) 5468; 5470

(ix) 7451; 7453

(x) 4229; 4231

(xi) 2999; 3001

(xii) 7988; 7990

XI. Write the numbers between:

(i) 3057 ………….. 3059

(ii) 1574 ………….. 1576

(iii) 3898 ………….. 3900

(iv) 6407 ………….. 6409

(v) 3281 ………….. 3283

(vi) 5000 ………….. 5002

(vii) 8342 ………….. 8344

(viii) 2318 ………….. 2320

(ix) 9836 ………….. 9838

(x) 4201 ………….. 4203

(xi) 1810 ………….. 1812

(xii) 7999 ………….. 8001

XI.

(i) 3058

(ii) 1575

(iii) 3899

(iv) 6408

(v) 3282

(vi) 5001

(vii) 8343

(viii) 2319

(ix) 9837

(x) 4202

(xi) 1811

(xii) 8000

Place value in 4-digits numbers:

A place value depends upon the position of a digit in a given number.

A place value keeps increasing, when a number moves from right to left.

1 one, place value = 1  1 or 1

8 tens, place value = 8  10 or 80

6 hundreds, place value = 6 100 or 600

3 thousands, place value = 4   1000 or 4000

3746 = 3 thousands + 7 hundreds + 4 tens + 6 ones

= 3000 + 700 + 40 + 6

## You might like these

• ### Combination of Addition and Subtraction | Mixed Addition & Subtraction

We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

• ### Subtraction of 3-Digit Numbers without Regrouping | Solved Examples

Subtraction of 3-digit numbers without regrouping are explained here with examples. 1. Ron has a ream of paper having 140 sheets in it. He has used 40 sheets for his project report. How many sheets are left in the ream? To find out the number of sheets left, we will perform

• ### Estimating a Sum | Round the Number | Numbers by Rounding | Estimating

We will learn the basic knowledge for estimating a sum. Here we will learn an easy way to estimate a sum of two numbers by rounding. In case of two digit numbers we can only round the number

• ### Addition of 3-Digit Numbers without Regrouping | Step-by-Step Method

We will learn Addition of 3-Digit Numbers without Regrouping. We know how to do addition of 3-digit numbers without regrouping. Let us recall it solving some examples. Solved Examples on Addition of 3-Digit Numbers without Regrouping 1. The shopkeeper has 153 packets

• ### Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

• ### Worksheet on Third Grade Fractions | Proper and Improper Fractions

Worksheet on third grade fractions is a great resource for children to practice the different types of questions on fraction. The questions are based on identifying the numerator and denominator

• ### Fraction as a Part of Collection | Pictures of Fraction | Fractional

How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it is folded into two halves, each half will have 7 rectangles. So, we can say

• ### Fraction as a Part of a Whole |Numerator|Denominator|Fractional Number

How is fraction as a part of a whole? We know, a fraction means a part. So, fraction is the part of a whole object. Thus, a fraction is the part of a collection or collections of objects. A fraction is a part of a whole number say 1, 2, 3, 4, ... 150 ... etc.

• ### 3rd Grade Division Worksheet | Division Facts | Multiplication Facts

In 3rd Grade Multiplication Worksheet we will solve how to divide using multiplication tables, relationship between multiplication and division, problems on properties of division, long division method, word problems on long division.

• ### Long Division | Division by One-Digit Divisor and Two-Digit Divisors

As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend one at a time starting with the highest place.

• ### 3rd Grade Multiplication Worksheet | Grade 3 Multiplication Questions

In 3rd Grade Multiplication Worksheet we will solve how to multiply 2-digit number by 1-digit number without regrouping, multiply 2-digit number by 1-digit number with regrouping, multiply 3-digit number by 1-digit number without regrouping, multiply 3-digit number

• ### Word Problems on Multiplication by 2-Digit Number | Word Problems |Ans

We will learn how to solve the word problems on multiplication by 2-digit number. Here we will apply the same process when we multiply a 2-digit number by a 2-digit number. Solved examples:

• ### Multiplying 3-Digit Numbers by 2-Digit Numbers | 3-Digit by 2-Digit |

"We will learn how to multiply 3-digit numbers by 2-digit numbers.

• ### Multiplying 2-Digit Numbers by 2-Digit Numbers |Multiplying by 2-Digit

We will learn how to multiply 2-digit numbers by 2-digit numbers.

• ### Word Problems on Multiplication by 1-Digit Number | Word Problems |Ans

We will learn how to solve the word problems on multiplication by 1-digit number. Here we will apply the same process when we multiply 2-digit number by 1-digit number and 3-digit number by 1-digit number.

3rd Grade Math Lessons

From Four Digit Numbers to HOME PAGE