Equivalence Relation on Set

Equivalence relation on set is a relation which is reflexive, symmetric and transitive.

A relation R, defined in a set A, is said to be an equivalence relation if and only if

(i) R is reflexive, that is, aRa for all a ∈ A.

(ii) R is symmetric, that is, aRb ⇒ bRa for all a, b ∈ A.

(iii) R is transitive, that is aRb and bRc ⇒ aRc for all a, b, c ∈ A.

The relation defined by “x is equal to y” in the set A of real numbers is an equivalence relation.


Let A be a set of triangles in a plane. The relation R is defined as “x is similar to y, x, y ∈ A”.

We see that R is;

(i) Reflexive, for, every triangle is similar to itself.

(ii) Symmetric, for, if x be similar to y, then y is also similar to x.

(iii) Transitive, for, if x be similar to y and y be similar to z, then x is also similar to z.

Hence R is an equivalence relation.

A relation R in a set S is called a partial order relation if it satisfies the following conditions:

(i) aRa for all a∈ A, [Reflexivity]

(ii) aRb and bRa ⇒ a = b, [Anti-symmetry]

(iii) aRb and bRc ⇒ aRc, [Transitivity]

In the set of natural numbers, the relation R defined by “aRb if a divides b” is a partial order relation, since here R is reflexive, anti-symmetric and transitive.

A set, in which a partial order relation is defined, is called a partially ordered set or a poset.


Solved example on equivalence relation on set:

1. A relation R is defined on the set Z by “a R b if a – b is divisible by 5” for a, b ∈ Z. Examine if R is an equivalence relation on Z.

Solution:

(i) Let a ∈ Z. Then a – a is divisible by 5. Therefore aRa holds for all a in Z and R is reflexive.

(ii) Let a, b ∈ Z and aRb hold. Then a – b is divisible by 5 and therefore b – a is divisible by 5.

Thus, aRb ⇒ bRa and therefore R is symmetric.

(iii) Let a, b, c ∈ Z and aRb, bRc both hold. Then a – b and b – c are both divisible by 5.

Therefore a – c = (a – b) + (b – c) is divisible by 5.

Thus, aRb and bRc  ⇒ aRc and therefore R is transitive.

Since R is reflexive, symmetric and transitive so, R is an equivalence relation on Z.

2. Let m e a positive integer. A relation R is defined on the set Z by “aRb if and only if a – b is divisible by m” for a, b ∈ Z. Show that R is an equivalence relation on set Z.

Solution:

(i) Let a ∈ Z. Then a – a = 0, which is divisible by m

Therefore, aRa holds for all a ∈ Z.

Hence, R is reflexive.

(ii) Let a, b ∈ Z and aRb holds. Then a – b is divisible by m and therefore, b – a is also divisible by m.

Thus, aRb ⇒ bRa.

Hence, R is symmetric.

(iii) Let a, b, c ∈ Z and aRb, bRc both hold. Then a – b is divisible by m and b – c is also divisible by m. Therefore, a – c = (a – b) + (b – c) is divisible by m.

Thus,  aRb and bRc ⇒ aRc

Therefore, R is transitive.

Since, R is reflexive, symmetric and transitive so, R is an equivalence relation on set Z


3. Let S be the set of all lines in 3 dimensional space. A relation ρ is defined on S by “lρm if and only if l lies on the plane of m” for l, m ∈ S.

Examine if ρ is (i) reflexive, (ii) symmetric, (iii) transitive

Solution:

(i) Reflexive: Let l ∈ S. Then l is coplanar with itself.

Therefore, lρl holds for all l in S.

Hence, ρ is reflexive

(ii)  Symmetric: Let l, m ∈ S and lρm holds. Then l lies on the plane of m.

Therefore, m lies on the plane of l. Thus, lρm ⇒  mρl and therefore ρ is symmetric.

(iii) Transitive: Let l, m, p ∈ S and lρm, mρp both hold. Then l lies on the plane of m and m lies on the plane of p. This does not always implies that l lies on the plane of p.

That is, lρm and mρp do not necessarily imply lρp.

Therefore, ρ is not transitive.

Since, R is reflexive and symmetric but not transitive so, R is not an equivalence relation on set Z

Set Theory

Sets

Representation of a Set

Types of Sets

Pairs of Sets

Subset

Practice Test on Sets and Subsets

Complement of a Set

Problems on Operation on Sets

Operations on Sets

Practice Test on Operations on Sets

Word Problems on Sets

Venn Diagrams

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Examples on Venn Diagram

Practice Test on Venn Diagrams

Cardinal Properties of Sets







7th Grade Math Problems

8th Grade Math Practice

From Equivalence Relation on Set to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 04, 24 09:47 AM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  2. Worksheet on Subtraction | Practice the Questions | Free Answers

    Oct 04, 24 01:28 AM

    In worksheet on subtraction, all grade students can practice the questions on subtracting numbers with more than two digits. This exercise sheet on subtraction can be practiced by the students

    Read More

  3. Subtraction Word Problems - 2-Digit Numbers | Subtraction Problems

    Oct 03, 24 03:22 PM

    Understand the concept on subtraction word problems - 2-digit numbers for the second grade. Read the question carefully to subtract the two-digit numbers to find the differences and follow the

    Read More

  4. Worksheet on Checking Subtraction Using Addition | Free Answers | Math

    Oct 03, 24 02:22 PM

    Checking Subtraction using Addition
    Here we can use addition to check the answer for the subtraction. Subtract ans check your answer. Find the difference and check your answer using addition.

    Read More

  5. Check for Subtraction and Addition | Checking Subtraction | Problems

    Oct 03, 24 01:13 PM

    Checking Subtraction with Addition
    We will learn to check for subtraction and addition answers after solving. Difference of two numbers is correct when the sum of the subtrahend number and the difference is equal to the minuend.

    Read More