Transitive Relation on Set

What is transitive relation on set?

Let A be a set in which the relation R defined.

R is said to be transitive, if

(a, b) ∈ R and (b, a) ∈ R ⇒ (a, c) ∈ R,

That is aRb and bRc ⇒ aRc where a, b, c ∈ A.

The relation is said to be non-transitive, if

(a, b) ∈ R and (b, c) ∈ R do not imply (a, c ) ∈ R.

For example, in the set A of natural numbers if the relation R be defined by ‘x less than y’ then

a < b and b < c imply a < c, that is, aRb and bRc ⇒ aRc.

Hence this relation is transitive.

Solved example of transitive relation on set:

1. Let k be given fixed positive integer.

Let R = {(a, a) : a, b  ∈ Z and (a – b) is divisible by k}.

Show that R is transitive relation.

Solution:

Given R = {(a, b) : a, b ∈ Z, and (a – b) is divisible by k}.

Let (a, b) ∈ R and (b, c) ∈ R. Then

      (a, b) ∈ R and (b, c) ∈ R

   ⇒ (a – b) is divisible by k and (b – c) is divisible by k.

   ⇒ {(a – b) + (b – c)} is divisible by k.

   ⇒ (a – c) is divisible by k.

   ⇒ (a, c) ∈ R.

Therefore, (a, b) ∈ R and (b, c) ∈ R    (a, c) ∈ R.

So, R is transitive relation.


2. A relation ρ on the set N is given by “ρ = {(a, b) ∈ N × N : a is divisor of b}”. Examine whether ρ is transitive or not transitive relation on set N.

Solution:

Given ρ = {(a, b) ∈ N × N : a is divisor of b}.

Let m, n, p ∈ N and (m, n) ∈ ρ and  (n, p ) ∈ ρ. Then

                                                 (m, n) ∈ ρ and  (n, p ) ∈ ρ

                                              ⇒ m is divisor of n and n is divisor of p

                                              ⇒ m is divisor of p

                                              ⇒ (m, p) ∈ ρ

Therefore, (m, n) ∈ ρ and (n, p) ∈ ρ ⇒ (m, p) ∈ ρ.

So, R is transitive relation.

Set Theory

Sets

Representation of a Set

Types of Sets

Pairs of Sets

Subset

Practice Test on Sets and Subsets

Complement of a Set

Problems on Operation on Sets

Operations on Sets

Practice Test on Operations on Sets

Word Problems on Sets

Venn Diagrams

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Examples on Venn Diagram

Practice Test on Venn Diagrams

Cardinal Properties of Sets








7th Grade Math Problems

8th Grade Math Practice

From Transitive Relation on Set to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 25, 25 12:21 PM

    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  2. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  3. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  4. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More

  5. 5th Grade Volume | Units of Volume | Measurement of Volume|Cubic Units

    Jul 20, 25 10:22 AM

    Cubes in Cuboid
    Volume is the amount of space enclosed by an object or shape, how much 3-dimensional space (length, height, and width) it occupies. A flat shape like triangle, square and rectangle occupies surface on…

    Read More