Standard Equation of an Hyperbola

We will learn how to find the standard equation of a hyperbola.

Let S be the focus, e (> 1) be the eccentricity and line KZ its directrix of the hyperbola whose equation is required.

Standard Equation of an Hyperbola

From the point S draw SK perpendicular to the directrix KZ. The line segment SK and the produced SK divides internally at A and externally at A’ respectively in the ratio e : 1.

Then,

\(\frac{SA}{AK}\) = e : 1      

⇒ SA = e  ∙ AK …………. (ii)

and  \(\frac{SA'}{A'K}\) =  e : 1    

⇒ SA' = e  ∙ A'K …………………. (ii)

The points A and A' he on the required hyperbola because according to the definition of hyperbola A and A’are such points that their distance from the focus bear constant ratio e (>1) to their respective distance from the directrix, therefore A and A' he on the required hyperbola.

Let AA’ = 2a and C be the mid-point of the line segment AA'. Therefore, CA = CA' = a.

Now draw CY perpendicular to AA’ and mark the origin at C. CX and CY are assumed as x and y-axes respectively.

Now, adding the above two equations (i) and (ii) we have,

SA + SA' = e (AK + A'K)

⇒ CS - CA + CS + CA' =  e (AC - CK + A’C + CK)

⇒ CS - CA + CS + CA' =  e (AC - CK + A’C + CK)

Now put the value of CA = CA' = a.

⇒ CS - a + CS + a = e (a - CK + a + CK)

⇒2CS = e (2a)

⇒ 2CS = 2ae

⇒ CS = ae …………………… (iii)

Now, again subtracting above two equations (i) from (ii) we have,

⇒ SA' - SA = e (A'K - AK)

⇒ AA'= e {(CA’ + CK) - (CA - CK)}

⇒ AA' = e (CA’ + CK - CA + CK)

Now put the value of CA = CA' = a.

⇒ AA' = e (a + CK - a + CK)

⇒ 2a = e (2CK)

⇒ 2a = 2e (CK)

⇒ a = e (CK)

⇒ CK = \(\frac{a}{e}\) ………………. (iv)

Let P (x, y) be any point on the required hyperbola and from P draw PM and PN perpendicular to KZ and KX respectively. Now join SP.

According to the graph, CN = x and PN = y.

Now form the definition of hyperbola we get,

SP = e PM

⇒ Sp\(^{2}\)= e\(^{2}\)PM\(^{2}\)

⇒ SP\(^{2}\) = e\(^{2}\)KN\(^{2}\)

⇒ SP\(^{2}\) = e\(^{2}\)(CN - CK)\(^{2}\)

⇒ (x - ae)\(^{2}\) + y\(^{2}\) = e\(^{2}\)(x - \(\frac{a}{e}\))\(^{2}\), [From (iii) and (iv)]

⇒ x\(^{2}\) - 2aex + (ae)\(^{2}\) + y\(^{2}\) = (ex - a)\(^{2}\)

⇒ (ex)\(^{2}\) - 2aex + a\(^{2}\) = x\(^{2}\) - 2aex + (ae)\(^{2}\) + y\(^{2}\)

⇒ (ex)\(^{2}\)  - x\(^{2}\) - y\(^{2}\) = (ae)\(^{2}\) - a\(^{2}\)

⇒ x\(^{2}\)(e\(^{2}\) - 1) - y\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1)

⇒ \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{a^{2}(e^{2} - 1)}\) = 1

We know that a\(^{2}\)(e\(^{2}\) - 1) = b\(^{2}\)

Therefore, \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1

For all the points P (x, y) the relation \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 satisfies on the required hyperbola.

Therefore, the equation \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 represents the equation of the hyperbola.

The equation of a hyperbola in the form of \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is known as the standard equation of the hyperbola.

The Hyperbola





11 and 12 Grade Math 

From Standard Equation of an Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

    Apr 19, 24 02:46 AM

    Perpendicular Lines
    In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

    Read More

  2. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 19, 24 01:55 AM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  3. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 18, 24 02:15 AM

    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  4. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  5. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More