Square Root of a Perfect Square by using the Prime Factorization Method



To find the square root of a perfect square by using the prime factorization method when a given number is a perfect square:

Step I: Resolve the given number into prime factors.

Step II: Make pairs of similar factors.

Step III: Take the product of prime factors, choosing one factor out of every pair.



Examples on square root of a perfect square by using the prime factorization method:

1. Find the square root of 484 by prime factorization method.

Solution:

Resolving 484 as the product of primes, we get

484 = 2 Γ— 2 Γ— 11 Γ— 11 

√484 = √(2 Γ— 2 Γ— 11 Γ— 11

= 2 Γ— 11

Therefore, √484 = 22



2. Find the square root of 324.

Solution:


The square root of 324 by prime factorization, we get


324 = 2 Γ— 2 Γ— 3 Γ— 3 Γ— 3 Γ— 3

√324 = √(2 Γ— 2 Γ— 3 Γ— 3 Γ— 3 Γ— 3)

= 2 Γ— 3 Γ— 3


Therefore, √324 = 18



3. Find out the square root of 1764.

Solution:


The square root of 1764 by prime factorization, we get

1764 = 2 x 2 x 3 x 3 x 7 x 7.

√1764 = √(2 x 2 x 3 x 3 x 7 x 7)

= 2 x 3 x 7




Therefore, √1764 = 42.



4. Evaluate √4356

Solution:


By using prime factorization, we get

4356 = 2 x 2 x 3 x 3 x 11 x 11

√4356 = √(2 x 2 x 3 x 3 x 11 x 11)

= 2 Γ— 3 Γ— 11




Therefore, √4356 = 66.



5. Evaluate √11025

Solution:


By using prime factorization, we get

11025 = 5 x 5 x 3 x 3 x 7 x 7.

√11025 = √(5 x 5 x 3 x 3 x 7 x 7)

= 5 Γ— 3 Γ— 7





Therefore, √11025 = 105

6. In an auditorium, the number of rows is equal to the number of chairs in each row. If the capacity of the auditorium is 2025, find the number of chairs in each row.

Solution:


Let the number of chairs in each row be x.

Then, the number of rows = x.

Total number of chairs in the auditorium = (x Γ— x) = xΒ²

But, the capacity of the auditorium = 2025 (given).

Therefore, xΒ² = 2025

= 5 Γ— 5 Γ— 3 Γ— 3 Γ— 3 Γ— 3

x = (5 Γ— 3 Γ— 3) = 45.






Hence, the number of chairs in each row = 45


7. Find the smallest number by which 396 must be multiplied so that the product becomes a perfect square.

Solution:


By prime factorization, we get

396 = 2 Γ— 2 Γ— 3 Γ— 3 Γ— 11

It is clear that in order to get a perfect square, one more 11 is required.

So, the given number should be multiplied by 11 to make the product a perfect square.




8. Find the smallest number by which 1100 must be divided so that the quotient is a perfect square.

Solution:


Expressing 1100 as the product of primes, we get

1100 = 2 Γ— 2 Γ— 5 Γ— 5 Γ— 11

Here, 2 and 5 occur in pairs and 11 does not.

Therefore, 1100 must be divided by 11 so that the quotient is 100

i.e., 1100 Γ· 11 = 100 and 100 is a perfect square.



9. Find the least square number divisible by each one of 8, 9and 10.

Solution:


The least number divisible by each one of 8, 9, 10 is their LCM.

Now, LCM of 8, 9, 10 = (2 Γ— 4 Γ— 9 Γ— 5) = 360

By prime factorization, we get

360 = 2 Γ— 2 Γ— 2 Γ— 3 Γ— 3 Γ— 5

To make it a perfect square it must be multiplied by (2 Γ— 5) i.e., 10.





Hence, the required number = (360 Γ— 10) = 3600.


● Square Root

Square Root

Square Root of a Perfect Square by using the Prime Factorization Method

Square Root of a Perfect Square by Using the Long Division Method

Square Root of Numbers in the Decimal Form

Square Root of Number in the Fraction Form

Square Root of Numbers that are Not Perfect Squares

Table of Square Roots

Practice Test on Square and Square Roots


● Square Root- Worksheets

Worksheet on Square Root using Prime Factorization Method

Worksheet on Square Root using Long Division Method

Worksheet on Square Root of Numbers in Decimal and Fraction Form











8th Grade Math Practice

From Square Root of a Perfect Square by using the Prime Factorization Method to HOME PAGE



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 25, 25 12:21 PM

    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  2. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  3. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  4. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More

  5. 5th Grade Volume | Units of Volume | Measurement of Volume|Cubic Units

    Jul 20, 25 10:22 AM

    Cubes in Cuboid
    Volume is the amount of space enclosed by an object or shape, how much 3-dimensional space (length, height, and width) it occupies. A flat shape like triangle, square and rectangle occupies surface on…

    Read More