Radian is a Constant Angle

Here we will discuss about radian is a constant angle. Let O be the centre of a circle and radius OR = r. If we take an arc AB = OA = r, then by definition, ∠AOB =1 radian.

Let AO be produced to meet the circle at the point C. Then the length of the arc ABC half the circumference and ∠AOC, the angle at the centre subtended by this arc = a straight angle = two right angles.

Now if we take the ratio of the two arcs and that of the two angles, we have

arc AB/arc ABC = r/(1/2 × 2∙π∙r) = 1/ π

AOB/∠AOC = 1 radian/2 right angles

Radian is a Constant Angle

But in geometry, we can show that an arc of a circle is proportional to the angle it subtends at the centre of the circle.

Therefore, ∠AOB/∠AOC = arc AB/arc ABC

or, 1 radian/2 right angles = 1/π

Therefore, 1 radian = 2/π right angles

This is constant as both 2 right angles and π are constants.

The approximate value of π is taken as 22/7 for calculation


π radian =


2 right angles


If we express one radian in the units of sexagesimal system, we will get

1 radian =




(180 × 7°)/22

57° 16’ 22” (approx.)

From Radian is a Constant Angle to HOME PAGE

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.