Cardinal Properties of Sets


Cardinal Properties of Sets:

We have already learnt about the union, intersection and difference of sets. Now, we will go through some practical problems on sets related to everyday life.


If A and B are finite sets, then

β€’ n(A βˆͺ B) = n(A) + n(B) - n(A ∩ B) 

If A ∩ B = Ρ„ , then n(A βˆͺ B) = n(A) + n(B) 

It is also clear from the Venn diagram that 

β€’ n(A - B) = n(A) - n(A ∩ B) 

β€’ n(B - A) = n(B) - n(A ∩ B) 

Cardinal Properties of Sets







Problems on Cardinal Properties of Sets

1. If P and Q are two sets such that P βˆͺ Q has 40 elements, P has 22 elements and Q has 28 elements, how many elements does P ∩ Q have?

Solution: 

Given n(P βˆͺ Q) = 40, n(P) = 18, n(Q) = 22 

We know that n(P U Q) = n(P) + n(Q) - n(P ∩ Q) 

So, 40 = 22 + 28 - n(P ∩ Q) 

40 = 50 - n(P ∩ Q) 

Therefore, n(P ∩ Q) = 50 – 40 

= 10 

2. In a class of 40 students, 15 like to play cricket and football and 20 like to play cricket. How many like to play football only but not cricket?

Solution:

Let C = Students who like cricket 

F = Students who like football 

C ∩ F = Students who like cricket and football both 

C - F = Students who like cricket only 

F - C = Students who like football only.

n(C) = 20     n(C ∩ F) = 15     n (C U F) = 40     n (F) = ? 

n(C βˆͺ F) = n(C) + n(F) - n(C ∩ F) 

40 = 20 + n(F) - 15

40 = 5 + n(F) 

40 – 5 = n(F) 

Therefore, n(F)= 35 

Therefore, n(F - C) = n(F) - n (C ∩ F) 

= 35 – 15 

= 20 

Therefore, Number of students who like football only but not cricket = 20

More problems on cardinal properties of sets

3. There is a group of 80 persons who can drive scooter or car or both. Out of these, 35 can drive scooter and 60 can drive car. Find how many can drive both scooter and car? How many can drive scooter only? How many can drive car only?

Solution:

Let S = {Persons who drive scooter}

     C = {Persons who drive car}

Given, n(S βˆͺ C) = 80     n(S) = 35     n(C) = 60

Therefore, n(S βˆͺ C) = n(S) + n(C) - n(S ∩ C)

80 = 35 + 60 - n(S ∩ C)

80 = 95 - n(S ∩ C)

Therefore, n(S∩C) = 95 – 80 = 15

Therefore, 15 persons drive both scooter and car.

Therefore, the number of persons who drive a scooter only = n(S) - n(S ∩ C)

                                                                                      = 35 – 15

                                                                                      = 20

Also, the number of persons who drive car only = n(C) - n(S ∩ C)

                                                                     = 60 - 15

                                                                     = 45



4. It was found that out of 45 girls, 10 joined singing but not dancing and 24 joined singing. How many joined dancing but not singing? How many joined both?


Solution:

Let S = {Girls who joined singing}

     D = {Girls who joined dancing}

Number of girls who joined dancing but not singing = Total number of girls - Number of girls who joined singing

45 – 24

= 21

Now, n(S - D) = 10       n(S) =24

Therefore, n(S - D) = n(S) - n(S ∩ D)

           β‡’ n(S ∩ D) = n(S) - n(S - D)

                           = 24 - 10

                           = 14

Therefore, number of girls who joined both singing and dancing is 14.

● Set Theory

● Sets

● Objects Form a Set

● Elements of a Set

● Properties of Sets

● Representation of a Set

● Different Notations in Sets

● Standard Sets of Numbers

● Types of Sets

● Pairs of Sets

● Subset

● Subsets of a Given Set

● Operations on Sets

● Union of Sets

● Intersection of Sets

● Difference of two Sets

● Complement of a Set

● Cardinal number of a set

● Cardinal Properties of Sets

● Venn Diagrams






7th Grade Math Problems

From Cardinal Properties of Sets to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 17, 25 12:40 AM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 11:46 PM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  4. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More

  5. Formation of Numbers | Smallest and Greatest Number| Number Formation

    Jul 15, 25 11:46 AM

    In formation of numbers we will learn the numbers having different numbers of digits. We know that: (i) Greatest number of one digit = 9,

    Read More