Rational Numbers Between Two Unequal Rational Numbers

As we know that rational numbers are the numbers which are represented in the form of p/q where ‘p’ and ‘q’ are integers and ‘q’ is not equal to zero. So, we can call rational numbers as fractions too. So, in this topic we will get to know how to find rational numbers between two unequal rational numbers.

Let us suppose ‘x’ and ‘y’ to be two unequal rational numbers. Now, if we are told to find a rational number lying in the mid- way of ‘x’ and ’y’, we can easily find that rational number by using the below given formula:

\(\frac{1}{2}\)(x + y), where ‘x’ and ‘y’ are the two unequal rational numbers between which we need to find the rational number.

Rational numbers are ordered, i.e., given two rational numbers x, y either x > y, x < y or x = y.


Also, between two rational numbers there are infinite number of rational numbers.

Let x, y (x < y) be two rational numbers. Then

\(\frac{x + y}{2}\) - x = \(\frac{y - x}{2}\) > 0; Therefore, x < \(\frac{x + y}{2}\)

y - \(\frac{x + y}{2}\) = \(\frac{y - x}{2}\) = \(\frac{y - x}{2}\) > 0; Therefore, \(\frac{x + y}{2}\) < y.

Therefore, x < \(\frac{x + y}{2}\) < y.

Thus, \(\frac{x + y}{2}\) is a rational number between the rational numbers x and y.


For understanding it much better let us have a look at some of the below mentioned examples:

1. Find a rational number lying mid- way between \(\frac{-4}{3}\) and \(\frac{-10}{3}\).

Solution:

Let us assume x = \(\frac{-4}{3}\)

                                       y = \(\frac{-10}{3}\)

If we try to solve the problem using formula mentioned above in the text, then it can be solved as:

\(\frac{1}{2}\){( \(\frac{-4}{3}\))+ (\(\frac{-10}{3}\))}

⟹ \(\frac{1}{2}\){( \(\frac{-14}{3}\))}

⟹ \(\frac{-14}{6}\)

⟹ \(\frac{-7}{6}\)

Hence, (\(\frac{-7}{6}\)) or (\(\frac{-14}{3}\)) is the rational number lying mid- way between \(\frac{-4}{3}\)and \(\frac{-10}{3}\).


2. Find a rational number in the mid- way of \(\frac{7}{8}\) and \(\frac{-13}{8}\)

Solution: 

Let us assume the given rational fractions as:

x = \(\frac{7}{8}\), 

y = \(\frac{-13}{8}\)

Now we see that the two given rational fractions are unequal and we have to find a rational number in the mid- way of these unequal rational fractional. So, by using above mentioned formula in the text we can find the required number. Hence,

From the given formula:

\(\frac{1}{2}\)(x + y) is the required mid- way number.

So, \(\frac{1}{2}\){ \(\frac{7}{8}\)+ (\(\frac{-13}{8}\))}

⟹ \(\frac{1}{2}\)( \(\frac{-6}{8}\))

⟹ \(\frac{-6}{16}\)

⟹  (\(\frac{-3}{8}\))

Hence, (\(\frac{-3}{8}\)) or (\(\frac{-6}{16}\)) is the required number between the given unequal rational numbers.

In the above examples, we saw how to find the rational number lying mid- way between two unequal rational numbers. Now we would see how to find a given amount of unknown numbers between two unequal rational numbers.


The process can be better understood by having a look at following example:

1. Find 20 rational numbers in between (\(\frac{-2}{5}\)) and \(\frac{4}{5}\).

Solution:

To find 20 rational numbers in between (\(\frac{-2}{5}\)) and \(\frac{4}{5}\), following steps must be followed:

Step I: (\(\frac{-2}{5}\)) = \(\frac{(-2) × 5}{5 × 5}\) = \(\frac{-10}{25}\)

Step II: \(\frac{4 × 5}{5 × 5}\) = \(\frac{20}{25}\)

Step III: Since, -10 < -9 < -8 < -7 < -6 < -5 < -4 ...… < 16 < 17 < 18 < 19 < 20

Step IV: So, \(\frac{-10}{25}\) < \(\frac{-9}{25}\) < \(\frac{-8}{25}\) < …… <  \(\frac{16}{25}\) < \(\frac{17}{25}\) < \(\frac{18}{25}\) <  \(\frac{19}{25}\).

Step V: Hence, 20 rational numbers between \(\frac{-2}{5}\) and \(\frac{4}{5}\) are:

\(\frac{-9}{25}\), \(\frac{-8}{25}\), \(\frac{-7}{25}\), \(\frac{-6}{25}\), \(\frac{-5}{25}\), \(\frac{4}{25}\) ……., \(\frac{2}{25}\), \(\frac{3}{25}\), \(\frac{4}{25}\), \(\frac{5}{25}\), \(\frac{6}{25}\), \(\frac{7}{25}\), \(\frac{8}{25}\), \(\frac{9}{25}\), \(\frac{10}{25}\).


All the questions of this type can be solved using above steps.

Rational Numbers

Rational Numbers

Decimal Representation of Rational Numbers

Rational Numbers in Terminating and Non-Terminating Decimals

Recurring Decimals as Rational Numbers

Laws of Algebra for Rational Numbers

Comparison between Two Rational Numbers

Rational Numbers Between Two Unequal Rational Numbers

Representation of Rational Numbers on Number Line

Problems on Rational numbers as Decimal Numbers

Problems Based On Recurring Decimals as Rational Numbers

Problems on Comparison Between Rational Numbers

Problems on Representation of Rational Numbers on Number Line

Worksheet on Comparison between Rational Numbers

Worksheet on Representation of Rational Numbers on the Number Line







9th Grade Math

From Rational Numbers Between Two Unequal Rational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More