Loading [MathJax]/jax/output/HTML-CSS/jax.js

Problems Based On Recurring Decimals As Rational Numbers

We know that recurring decimal numbers are those which are non- terminating but have repeating digits after the decimal point. These numbers are never ending. They go on till infinity.

For example: 1.23232323… is an example of recurring decimal number as 23 are the repeating digits in the number.

In this topic of rational number we will learn to solve different types of problems based on conversions of recurring decimals into rational fractions. Let us have look at some steps which we need to follow while converting a recurring decimal number into a rational fraction:

Step I:Assume ‘x’ to be a recurring number whose rational fraction we need to find.

Step II: Have a careful observation on the repeating digits of the decimal number.

Step III: Now place repeating digits to the left of the decimal point.

Step IV: After step 3 put the repeating digits on the right side of the decimal point.

Step V: After doing so subtract both sides of the equation as such to maintain the equality of the equations. Make sure that after subtraction difference of both sides are positive.


Now let us have a look at following examples:

1. Convert 1.333… into rational fraction.

Solution:

Step I: Let x = 1.333

Step II: Repeating digit is ‘3’

Step III: Placing repeating digit on the left side of the decimal point can be done by multiplying the original number by 10, i.e.,

     10x = 13.333

Step IV: By placing repeating digit to the right of the decimal point it becomes the original number. Technically this can be done by multiplying original number by 1, i.e.,

        x = 1.333

Step V: So, our two equations are:

                 10x = 13.333

                 x = 1.333

On subtracting both sides of the equation, we get:

          10x – x = 13.333 – 1.333

     ⟹         9x = 12

     ⟹           x = 129

     ⟹           x = 43

Hence, the required rational fraction is 43.


2. Convert 12.3454545… into rational fraction.

Solution: 

Step I: Let x = 12.34545…

Step II: The repeating digits of the given decimal fraction are ‘45’.

Step III: Now we need to transfer repeating digits to the left of the decimal point. To do so, we need to multiply the original number by 1000. So,

1000x = 12345.4545

Step IV: Now we have to shift the repeating digits to the right of the decimal point. To do so we have to multiply the original number by 10. So,

               10x = 123.4545

Step V: Two equations are as:

             1000x = 12345.4545, and

         ⟹    10x = 123.4545

Now we have to perform the subtraction on both sides of the equation to maintain the equality.

            1000x – 10x = 12345.4545 – 123.4545

      ⟹              990x = 12222

       ⟹                   x = 12222990

       ⟹                   x = 1358110

       ⟹                  x = 67955

    Hence, the required rational fraction is 67955.


3. Convert 134.45757… into the rational fraction.

Solution:

Step I: Let x = 134.45757.

Step II: The repeating digits of the given decimal number are ‘57’.

Step III: Now we need to transfer the repeating digits of the decimal number to the left side of the decimal point. To do so, we need to multiply the given number with 1000. So,

             1000x = 134457.5757

Step IV: Now we need to transfer the repeating digits of the decimal number to the right side of the decimal point. To do so, we need to multiply the original number by 10. So,

              10x = 1344.5757

Step V: Two equations are as follows:

             1000x = 134457.5757, and

        ⟹      10x = 1344.5757


Now we have to perform subtraction on both sides of the equations so as to maintain the equality.

       1000x - 10x = 134457.5757 - 1344.5757

⟹ 990x = 133113 

⟹ x = 133113990

⟹ x = 44371330

Hence, the required rational fraction is 44371330.


All the conversion of recurring decimal numbers to rational fractions can be done by following the above mentioned steps.

Rational Numbers

Rational Numbers

Decimal Representation of Rational Numbers

Rational Numbers in Terminating and Non-Terminating Decimals

Recurring Decimals as Rational Numbers

Laws of Algebra for Rational Numbers

Comparison between Two Rational Numbers

Rational Numbers Between Two Unequal Rational Numbers

Representation of Rational Numbers on Number Line

Problems on Rational numbers as Decimal Numbers

Problems Based On Recurring Decimals as Rational Numbers

Problems on Comparison Between Rational Numbers

Problems on Representation of Rational Numbers on Number Line

Worksheet on Comparison between Rational Numbers

Worksheet on Representation of Rational Numbers on the Number Line








9th Grade Math

From Problems Based On Recurring Decimals As Rational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More