Subscribe to our YouTube channel for the latest videos, updates, and tips.


Problems on Rational numbers as Decimal Numbers

Rational numbers are the numbers in form of fractions. They can also be converted in the decimal number form by dividing the numerator of the fraction by its denominator. Let us assume ‘\(\frac{x}{y}\)’ to be a rational number. Here, ‘x’ is the numerator of the fraction and ‘y’ is the denominator of the fraction. Hence, the given fraction is converted to the decimal number by dividing ‘x’ by ‘y’.

To check whether a given rational fraction is terminating or non- terminating, we can use the following formula:

                      \(\frac{x}{2^{m} × 5^{n}}\), where x ∈ Z is the numerator of the given rational fraction and ‘y’ (denominator) can be written in the powers of 2 and 5 and m ∈ W; n ∈ W.

If a rational number can be written in the above form then the given rational fraction can be written in terminating decimal form otherwise it can’t be written in that form.

The concept can be easily understood by having a look at the below given solved example:

1. Check whether \(\frac{1}{4}\) is a terminating or non- terminating decimal. Also, convert it into decimal number.

Solution: 

To check the given rational number for terminating and non- terminating decimal number we will convert it into the form of \(\frac{x}{2^{m} × 5^{n}}\). So,

\(\frac{1}{4}\) = \(\frac{1}{2^{2} × 5^{0}}\)

Since, the given rational fraction can be converted into above form, so the given rational fraction is a terminating decimal number. Now, to convert it into decimal number the numerator of the fraction will be divided by denominator of the fraction. Hence, \(\frac{1}{4}\) = 0.25. So, the required decimal conversion of given rational fraction is 0.25.


2. Check whether \(\frac{8}{3}\) is a terminating or non- terminating decimal number. Also, convert it into the decimal number.

Solution: 

The given rational fraction can be checked for terminating and non- terminating by using above mentioned formula. So, \(\frac{8}{3}\) =  \(\frac{8}{3^{1} × 5^{0}}\), which is not in the form of \(\frac{x}{2^{m} × 5^{n}}\). So, \(\frac{8}{3}\) is a non- terminating decimal fraction. To convert it into decimal number we’ll divide 8 by 3. Upon division, we find the decimal conversion of \(\frac{8}{3}\) to be 2.666…. It can be rounded off to 2.67. Hence, required decimal conversion is 2.67.


3. Which of the rational numbers \(\frac{2}{13}\) and \(\frac{27}{40}\) can be written as a terminating decimal?

Solution:

\(\frac{2}{13}\) = \(\frac{2}{13^{1}}\) which is not in the form \(\frac{x}{2^{m} × 5^{n}}\). So, \(\frac{2}{13}\) is a non-terminating recurring decimal. 

\(\frac{27}{40}\) = \(\frac{27}{2^{3} × 5^{1}}\) which is in the form \(\frac{x}{2^{m} × 5^{n}}\). So, \(\frac{27}{40}\) is a terminating decimal. 


4. Check whether following rational fractions are terminating or non- terminating. If they are terminating convert them into decimal number:

(i) \(\frac{1}{3}\)

(ii) \(\frac{2}{5}\)

(iii) \(\frac{3}{6}\)

(iv) \(\frac{8}{13}\)

Solution: 

To check for terminating and non- terminating rational fraction we use the formula: \(\frac{x}{2^{m} × 5^{n}}\)

Any rational number in above form will be terminating otherwise not.

(i) \(\frac{1}{3}\) = \(\frac{1}{3^{1} × 5^{0}}\)

Since the given rational fraction is not in the above format. So, the fraction is non- terminating.


(ii) \(\frac{2}{5}\) = \(\frac{2}{2^{0} × 5^{1}}\) 

Since the given rational fraction is in the above mentioned format. So, the rational fraction is terminating one. To convert it into decimal number we will divide numerator (2) by the denominator (5). Upon division, we find that the decimal conversion of \(\frac{2}{5}\) is equal to 0.4.


(iii) Since, \(\frac{3}{6}\) can be simplified into \(\frac{1}{2}\). Now \(\frac{1}{2}\) can be written as: \(\frac{1}{2}\) = \(\frac{1}{2^{1} × 5^{0}}\) 

Since \(\frac{3}{6}\) can be converted into the above format. It can be converted into decimal number by dividing numerator (3) by denominator (6). Upon division, we find that the decimal conversion of \(\frac{3}{6}\) is equal to 0.5.


(iv) \(\frac{8}{13}\) = \(\frac{8}{13^{1} × 5^{0}}\) 

Since \(\frac{8}{13}\) can’t be expressed in the above mentioned format. So, \(\frac{8}{13}\) is a non- terminating fraction.


Rational Numbers

Rational Numbers

Decimal Representation of Rational Numbers

Rational Numbers in Terminating and Non-Terminating Decimals

Recurring Decimals as Rational Numbers

Laws of Algebra for Rational Numbers

Comparison between Two Rational Numbers

Rational Numbers Between Two Unequal Rational Numbers

Representation of Rational Numbers on Number Line

Problems on Rational numbers as Decimal Numbers

Problems Based On Recurring Decimals as Rational Numbers

Problems on Comparison Between Rational Numbers

Problems on Representation of Rational Numbers on Number Line

Worksheet on Comparison between Rational Numbers

Worksheet on Representation of Rational Numbers on the Number Line







9th Grade Math

From Problems on Rational numbers as Decimal Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Conversion of Improper Fractions into Mixed Fractions |Solved Examples

    May 12, 25 04:52 AM

    Conversion of Improper Fractions into Mixed Fractions
    In conversion of improper fractions into mixed fractions, we follow the following steps: Step I: Obtain the improper fraction. Step II: Divide the numerator by the denominator and obtain the quotient…

    Read More

  2. Multiplication Table of 6 | Read and Write the Table of 6 | Six Table

    May 12, 25 02:23 AM

    Multiplication Table of Six
    Repeated addition by 6’s means the multiplication table of 6. (i) When 6 bunches each having six bananas each. By repeated addition we can show 6 + 6 + 6 + 6 + 6 + 6 = 36 Then, six 6 times or 6 sixes

    Read More

  3. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 11, 25 01:22 PM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More

  4. Worksheet on Dividing Decimals | Huge Number of Decimal Division Prob

    May 11, 25 11:52 AM

    Worksheet on Dividing Decimals
    Practice the math questions given in the worksheet on dividing decimals. Divide the decimals to find the quotient, same like dividing whole numbers. This worksheet would be really good for the student…

    Read More

  5. Worksheet on Multiplying Decimals | Product of the Two Decimal Numbers

    May 11, 25 11:18 AM

    Practice the math questions given in the worksheet on multiplying decimals. Multiply the decimals to find the product of the two decimal numbers, same like multiplying whole numbers.

    Read More