Rational Exponent

In rational exponent there are positive rational exponent and negative rational exponent.

Positive Rational Exponent:

We know that 2³ = 8. It can also be expressed as 8\(^{\frac{1}{3}}\) = 2. 


In general if x and yare non-zero rational numbers and m is a positive integer such that xᵐ = y then we can also express it as y\(^{\frac{1}{m}}\) = x but we can write y\(^{\frac{1}{m}}\) = \(\sqrt[m]{y}\) and is called mᵗʰ root of y. 


For example, y\(^{\frac{1}{2}}\) = \(\sqrt[2]{y}\), y\(^{\frac{1}{3}}\) = ∛y, y\(^{\frac{1}{4}}\) = ∜y, etc. If x is a positive rational number then for a positive ration exponent p/q we have x₀can be defined in two equivalent form. 

x\(^{\frac{p}{q}}\) = \((x^{p})^{\frac{1}{q}}\) = \(\sqrt[q]{x^{p}}\) is read as qᵗʰ root of xᵖ


x\(^{\frac{p}{q}}\) = \((x^{\frac{1}{q}})^{p}\) = \((\sqrt[q]{x})^{p}\) is read as pᵗʰ power of qᵗʰ root of x 


For example:

1. Find (125)\(^{\frac{2}{3}}\)   

Solution:


(125)\(^{\frac{2}{3}}\)   

125 can be expressed as 5 × 5 × 5 = 5³


So, we have (125)2/3 = (53)2/3 = 53 × 2/3 = 52 = 25



2. Find (8/27)4/3

Solution:


(8/27)4/3

8 = 23 and 27 = 33

So, we have (8/27)4/3 = (23/33)4/3

= [(2/3) 3]4/3

= (2/3)3 × 4/3

= (2/3) 4

= 2/3 × 2/3 × 2/3 × 2/3

= 16/81



3. Find 91/2

Solution:


91/2

= √(2&9)

= [(3)2]1/2

= (3)2 × 1/2

= 3



4. Find 1251/3

Solution:


1251/3

= ∛125

= [(5) 3]1/3

= (5) 3 × 1/3

= 5



Negative Rational Exponent:

We already learnt that if x is a non-zero rational number and m is any positive integer then x-m = 1/xm = (1/x)m, i.e., x-m is the reciprocal of xm.

Same rule exists of rational exponents.

If p/q is a positive rational number and x > 0 is a rational number

Then x-p/q = 1/xp/q = (1/x) p/q, i.e., x-p/q is the reciprocal of xp/q

If x = a/b, then (a/b)-p/q = (b/a)p/q

For example:

1. Find 9-1/2

Solution:


9-1/2

= 1/91/2

= (1/9)1/2

= [(1/3)2]1/2

= (1/3)2 × 1/2

= 1/3


2. Find (27/125)-4/3

Solution:


(27/125)-4/3

= (125/27)4/3

= (53/33)4/3

= [(5/3) 3]4/3

= (5/3)3 × 4/3

= (5/3)4

= (5 × 5 × 5 × 5)/(3 × 3 × 3 × 3)

= 625/81




 Exponents

Exponents

Laws of Exponents

Rational Exponent

Integral Exponents of a Rational Numbers

Solved Examples on Exponents

Practice Test on Exponents


 Exponents - Worksheets

Worksheet on Exponents











8th Grade Math Practice

From Rational Exponent to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More