Laws of Exponents

The laws of exponents are explained here along with their examples.

1. Multiplying Powers with same Base

For example: x² × x³, 2³ × 2⁵, (-3)² × (-3)⁴

In multiplication of exponents if the bases are same then we need to add the exponents.

Consider the following: 

1. 2³ × 2² = (2 × 2 × 2) × (2 × 2) = 2\(^{3 + 2}\) = 2⁵

2. 3⁴ × 3² = (3 × 3 × 3 × 3) × (3 × 3) = 3\(^{4 + 2}\) = 3⁶

3. (-3)³ × (-3)⁴ = [(-3) × (-3) × (-3)] × [(-3) × (-3) × (-3) × (-3)]

                        = (-3)\(^{3 + 4}\) 

                        = (-3)⁷


4. m⁵ × m³ = (m × m × m × m × m) × (m × m × m)

                  = m\(^{5 + 3}\) 

                  = m⁸


From the above examples, we can generalize that during multiplication when the bases are same then the exponents are added. 

aᵐ × aⁿ = a\(^{m + n}\)

In other words, if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, then

aᵐ × aⁿ = a\(^{m + n}\)


Similarly, (\(\frac{a}{b}\))ᵐ × (\(\frac{a}{b}\))ⁿ = (\(\frac{a}{b}\))\(^{m + n}\)

\[(\frac{a}{b})^{m} \times (\frac{a}{b})^{n} = (\frac{a}{b})^{m + n}\]


Note: 

(i) Exponents can be added only when the bases are same. 

(ii) Exponents cannot be added if the bases are not same like

m⁵ × n⁷, 2³ × 3⁴

Multiplying Powers with same Base, Laws of Exponents

For example:

1. 5³ ×5⁶

= (5 × 5 × 5) × (5 × 5 × 5 × 5 × 5 × 5)

= 5\(^{3 + 6}\), [here the exponents are added] 

= 5⁹


2. (-7)\(^{10}\) × (-7)¹²

= [(-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)] × [( -7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)].

= (-7)\(^{10 + 12}\), [Exponents are added] 

= (-7)²²


3. \((\frac{1}{2})^{4}\) × \((\frac{1}{2})^{3}\)

=[(\(\frac{1}{2}\)) × (\(\frac{1}{2}\)) × (\(\frac{1}{2}\)) × (\(\frac{1}{2}\))] × [(\(\frac{1}{2}\)) × (\(\frac{1}{2}\)) × (\(\frac{1}{2}\))] 


=(\(\frac{1}{2}\))\(^{4 + 3}\)

=(\(\frac{1}{2}\))⁷


4. 3² × 3⁵

= 3\(^{2 + 5}\)

= 3⁷


5. (-2)⁷ × (-2)³

= (-2)\(^{7 + 3}\)

= (-2)\(^{10}\)



6. (\(\frac{4}{9}\))³ × (\(\frac{4}{9}\))²

= (\(\frac{4}{9}\))\(^{3 + 2}\)

= (\(\frac{4}{9}\))⁵


We observe that the two numbers with the same base are

multiplied; the product is obtained by adding the exponent.


2. Dividing Powers with the same Base

For example: 

3⁵ ÷ 3¹, 2² ÷ 2¹, 5(²) ÷ 5³

In division if the bases are same then we need to subtract the exponents. 

Consider the following: 

2⁷ ÷ 2⁴ = \(\frac{2^{7}}{2^{4}}\)

            = \(\frac{2 × 2 × 2 × 2 × 2 × 2 × 2}{2 × 2 × 2 × 2}\)

            = 2\(^{7 - 4}\)

            = 2³

5⁶ ÷ 5² = \(\frac{5^{6}}{5^{2}}\)

            = = \(\frac{5 × 5 × 5 × 5 × 5 × 5}{5 × 5}\)

            = 5\(^{6 - 2}\) 

            = 5⁴


10⁵ ÷ 10³ = \(\frac{10^{5}}{10^{3}}\)

                = \(\frac{10 × 10 × 10 × 10 × 10}{10 × 10 × 10}\)

                = 10\(^{5 - 3}\)

                = 10²


7⁴ ÷ 7⁵ = \(\frac{7^{4}}{7^{5}}\)

            = \(\frac{7 × 7 × 7 × 7}{7 × 7 × 7 × 7 × 7}\)

            = 7\(^{4 - 5}\) 

            = 7\(^{-1}\)


Let a be a non zero number, then

a⁵ ÷ a³ = \(\frac{a^{5}}{a^{3}}\)

            = \(\frac{a × a × a × a × a}{a × a × a}\)

            = a\(^{5 - 3}\) 

            = a²


again, a³ ÷ a⁵ = \(\frac{a^{3}}{a^{5}}\)

                     = \(\frac{a × a × a}{a × a × a × a × a}\)

                     = a\(^{-(5 - 3)}\)

                     = a\(^{-2}\)

Thus, in general, for any non-zero integer a, 

aᵐ ÷ aⁿ = \(\frac{a^{m}}{a^{n}}\) = a\(^{m - n}\)


Note 1: 

Where m and n are whole numbers and m > n; 

aᵐ ÷ aⁿ = \(\frac{a^{m}}{a^{n}}\) = a\(^{-(n - m)}\)


Note 2: 

Where m and n are whole numbers and m < n; 

We can generalize that if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, such that m > n, then 

aᵐ ÷ aⁿ = a\(^{m - n}\) if m < n, then aᵐ ÷ aⁿ = \(\frac{1}{a^{n - m}}\)

Similarly, \((\frac{a}{b})^{m}\) ÷ \((\frac{a}{b})^{n}\) = \(\frac{a}{b}\) \(^{m - n}\)

Dividing Powers with the same Base, Laws of Exponents

For example:

1. 7\(^{10}\) ÷ 7⁸ = \(\frac{7^{10}}{7^{8}}\)

                             = \(\frac{7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7}{7 × 7 × 7 × 7 × 7 × 7 × 7 × 7}\)

                             = 7\(^{10 - 8}\), [here exponents are subtracted] 

                             = 7²


2. p⁶ ÷ p¹ = \(\frac{p^{6}}{p^{1}}\)

               = \(\frac{p × p × p × p × p × p}{p}\)

               = p\(^{6 - 1}\), [here exponents are subtracted] 

               = p⁵


3. 4⁴ ÷ 4² = \(\frac{4^{4}}{4^{2}}\)

                = \(\frac{4 × 4 × 4 × 4}{4 × 4}\)

                = 4\(^{4 - 2}\), [here exponents are subtracted] 

                = 4²


4. 10² ÷ 10⁴ = \(\frac{10^{2}}{10^{4}}\)

                   = \(\frac{10 × 10}{10 × 10 × 10 × 10}\)

                   = 10\(^{-(4 - 2)}\), [See note (2)] 

                   = 10\(^{-2}\)


5. 5³ ÷ 5¹

= 5\(^{3 - 1}\)

= 5²



6. \(\frac{(3)^{5}}{(3)^{2}}\)

= 3\(^{5 - 2}\)

= 3³


7. \(\frac{(-5)^{9}}{(-5)^{6}}\)

= (-5)\(^{9 - 6}\)

= (-5)³


8. (\(\frac{7}{2}\))⁸ ÷ (\(\frac{7}{2}\))⁵

= (\(\frac{7}{2}\))\(^{8 - 5}\)

= (\(\frac{7}{2}\))³


Laws of Exponents or Indices

3. Power of a Power

For example: (2³)², (5²)⁶, (3² )\(^{-3}\)

In power of a power you need multiply the powers.

Consider the following

(i) (2³)⁴

Now, (2³)⁴ means 2³ is multiplied four times

i.e. (2³)⁴ = 2³ × 2³ × 2³ × 2³

=2\(^{3 + 3 + 3 + 3}\)

=2¹²

Note: by law (l), since aᵐ × aⁿ = a\(^{m + n}\).



(ii) (2³)²

Similarly, now (2³)² means 2³ is multiplied two times

i.e. (2³)² = 2³ × 2³

= 2\(^{3 + 3}\), [since aᵐ × aⁿ = a\(^{m + n}\)] 

= 2⁶

Note: Here, we see that 6 is the product of 3 and 2 i.e,

                         (2³)² = 2\(^{3 × 2}\)= 2⁶



(iii) (4\(^{- 2}\))³


Similarly, now (4\(^{-2}\))³ means 4\(^{-2}\)

 is multiplied three times


i.e. (4\(^{-2}\))³ =4\(^{-2}\) × 4\(^{-2}\) × 4\(^{-2}\)

= 4\(^{-2 + (-2) + (-2)}\)

= 4\(^{-2 - 2 - 2}\)

= 4\(^{-6}\)

Note: Here, we see that -6 is the product of -2 and 3 i.e,

                (4\(^{-2}\))³ = 4\(^{-2 × 3}\) = 4\(^{-6}\)


For example:

1.(3²)⁴ = 3\(^{2 × 4}\) = 3⁸

2. (5³)⁶ = 5\(^{3 × 6}\) = 5¹⁸

3. (4³)⁸ = 4\(^{3 × 8}\) = 4²⁴

4. (aᵐ)⁴ = a\(^{m × 4}\) = a⁴ᵐ

5. (2³)⁶ = 2\(^{3 × 6}\) = 2¹⁸

6. (xᵐ)\(^{-n}\) = x\(^{m × -(n)}\) = x\(^{-mn}\)

7. (5²)⁷ = 5\(^{2 × 7}\) = 5¹⁴

8. [(-3)⁴]² = (-3)\(^{4 × 2}\) = (-3)⁸


In general, for any non-integer a, (aᵐ)ⁿ= a\(^{m × n}\) = a\(^{mn}\)

Thus where m and n are whole numbers. 


If ‘a’ is a non-zero rational number and m and n are positive integers, then {(\(\frac{a}{b}\))ᵐ}ⁿ = (\(\frac{a}{b}\))\(^{mn}\)

Power of a Power, Laws of Exponents

For example:

[(\(\frac{-2}{5}\))³]²

= (\(\frac{-2}{5}\))\(^{3 × 2}\)

= (\(\frac{-2}{5}\))⁶


4. Multiplying Powers with the same Exponents

For example: 3² × 2², 5³ × 7³

We consider the product of 4² and 3², which have different bases, but the same exponents. 

(i) 4² × 3² [here the powers are same and the bases are different] 

= (4 × 4) × (3 × 3) 

= (4 × 3) × (4 × 3) 

= 12 × 12

= 12²

Here, we observe that in 12², the base is the product of bases 4 and 3. 

Multiplying Powers with the same Exponents, Exponent Rules

We consider, 

(ii) 4³ × 2³

= (4 × 4 × 4) × (2 × 2 × 2)

= (4 × 2)× ( 4 × 2) × (4 × 2)

= 8 × 8 × 8

= 8³



(iii) We also have, 2³ × a³

= (2 × 2 × 2) × (a × a × a)

= (2 × a) × (2 × a) × (2 × a)

= (2 × a)³

= (2a)³ [Here 2 × a = 2a]



(iv) Similarly, we have, a³ × b³

= (a × a × a) × (b × b × b)

= (a × b) × (a × b) × (a × b)

= (a × b)³

= (ab)³ [Here a × b = ab]

Note: In general, for any non-zero integer a, b.

aᵐ × bᵐ

= (a × b)ᵐ

= (ab)ᵐ [Here a × b = ab]


aᵐ × bᵐ = (ab)ᵐ


Note: Where m is any whole number.

(-a)³ × (-b)³

= [(-a) × (-a) × (-a)] × [(-b) × (-b) × (-b)]

= [(-a) × (-b)] × [(-a) × (-b)] × [(-a) × (-b)]

= [(-a) × (-b)]³

= (ab)³, [Here a × b = ab and two negative become positive, (-) × (-) = +]



5. Negative Exponents

If the exponent is negative we need to change it into positive exponent by writing the same in the denominator and 1 in the numerator.

If ‘a’ is a non-zero integer or a non-zero rational number and m is a positive integers, then a\(^{-m}\) is the reciprocal of aᵐ, i.e., 


a\(^{-m}\) = \(\frac{1}{a^{m}}\), if we take ‘a’ as \(\frac{p}{q}\) then (\(\frac{p}{q}\))\(^{-m}\) = \(\frac{1}{(\frac{p}{q})^{m}}\) = (\(\frac{q}{p}\))ᵐ


again, \(\frac{1}{a^{-m}}\) = aᵐ


Similarly, (\(\frac{a}{b}\))\(^{-n}\) = (\(\frac{b}{a}\))ⁿ, where n is a positive integer


Consider the following

2\(^{-1}\) = \(\frac{1}{2}\)

2\(^{-2}\) = \(\frac{1}{2^{2}}\) = \(\frac{1}{2}\) × \(\frac{1}{2}\) = \(\frac{1}{4}\)

2\(^{-3}\) = \(\frac{1}{2^{3}}\) = \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) = \(\frac{1}{8}\)

2\(^{-4}\) = \(\frac{1}{2^{4}}\) = \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\)  = \(\frac{1}{16}\)

2\(^{-5}\) = \(\frac{1}{2^{5}}\) = \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) = \(\frac{1}{32}\)


[So in negative exponent we need to write 1 in the numerator and in the denominator 2 multiplied to itself five times as 2\(^{-5}\). In other words negative exponent is the reciprocal of positive exponent] 

Negative Exponents, Laws of Exponents

For example:

1. 10\(^{-3}\)

= \(\frac{1}{10^{3}}\), [here we can see that 1 is in the numerator and in the denominator 10³ as we know that negative exponent is the reciprocal] 

= \(\frac{1}{10}\) × \(\frac{1}{10}\) × \(\frac{1}{10}\), [Here 10 is multiplied to itself 3 times] 

= \(\frac{1}{1000}\)



2. (-2)\(^{-4}\)

= \(\frac{1}{(-2)^{4}}\) [Here we can see that 1 is in the numerator and in the denominator (-2)⁴] 

= (- \(\frac{1}{2}\)) × (- \(\frac{1}{2}\)) × (- \(\frac{1}{2}\)) × (- \(\frac{1}{2}\)) 

= \(\frac{1}{16}\)


3. 2\(^{-5}\)

= \(\frac{1}{2^{5}}\)

= \(\frac{1}{2}\) × \(\frac{1}{2}\)

= \(\frac{1}{4}\)



4. \(\frac{1}{3^{-4}}\)

= 3⁴

= 3 × 3 × 3 × 3

= 81


5. (-7)\(^{-3}\)

= \(\frac{1}{(-7)^{3}}\)



6. (\(\frac{3}{5}\))\(^{-3}\)

= (\(\frac{5}{3}\))³



7. (-\(\frac{7}{2}\))\(^{-2}\)

= (-\(\frac{2}{7}\))²


6. Power with Exponent Zero

If the exponent is 0 then you get the result 1 whatever the base is. 

For example: 8\(^{0}\), (\(\frac{a}{b}\))\(^{0}\), m\(^{0}\)…....


If ‘a’ is a non-zero integer or a non-zero rational number then, 

a\(^{0}\) = 1


Similarly, (\(\frac{a}{b}\))\(^{0}\) = 1


Consider the following

a\(^{0}\) = 1 [anything to the power 0 is 1] 

(\(\frac{a}{b}\))\(^{0}\) = 1

(\(\frac{-2}{3}\))\(^{0}\) = 1

(-3)\(^{0}\) = 1

Power with Exponent Zero, Laws of Exponents

For example:

1. (\(\frac{2}{3}\))³ × (\(\frac{2}{3}\))\(^{-3}\)

= (\(\frac{2}{3}\))\(^{3 + (-3)}\), [Here we know that aᵐ × aⁿ = a\(^{m + n}\)] 

= (\(\frac{2}{3}\))\(^{3 - 3}\)

= (\(\frac{2}{3}\))\(^{0}\)

= 1



2. 2⁵ ÷ 2⁵

\(\frac{2^{5}}{2^{5}}\)

= \(\frac{2 × 2 × 2 × 2 × 2}{2 × 2 × 2 × 2 × 2}\)

= 2\(^{5 - 5}\), [Here by the law aᵐ ÷ aⁿ =a\(^{m - n}\)] 

= 2

= 1




3. 4\(^{0}\) × 3\(^{0}\)

= 1 × 1, [Here as we know anything to the power 0 is 1]

= 1


4. aᵐ × a\(^{-m}\)

= a\(^{m - m}\)

= a\(^{0}\)

= 1


5. 5\(^{0}\) = 1

6. (\(\frac{-4}{9}\))\(^{0}\) = 1

7. (-41)\(^{0}\) = 1

8. (\(\frac{3}{7}\))\(^{0}\) = 1



7. Fractional Exponent

In fractional exponent we observe that the exponent is in fraction form.

a\(^{\frac{1}{n}}\), [Here a is called the base and \(\frac{1}{n}\) is called the exponent or power]

= \(\sqrt[n]{a}\), [nth root of a] 

\[a^{\frac{1}{n}} = \sqrt[n]{a}\]



Consider the following:

2\(^{\frac{1}{1}}\) = 2 (it will remain 2). 

2\(^{\frac{1}{2}}\) = √2 (square root of 2).

2\(^{\frac{1}{3}}\) = ∛2 (cube root of 2).

2\(^{\frac{1}{4}}\) = ∜2 (fourth root of 2).

2\(^{\frac{1}{5}}\) = \(\sqrt[5]{2}\) (fifth root of 2). 

Fractional Exponent, Laws of Exponents

For example:

1. 2\(^{\frac{1}{2}}\) = √2 (square root of 2). 

2. 3\(^{\frac{1}{2}}\) = √3 [square root of 3] 

3. 5\(^{\frac{1}{3}}\) = ∛5 [cube root of 5]

4. 10\(^{\frac{1}{3}}\) = ∛10 [cube root of 10]

5. 21\(^{\frac{1}{7}}\) = \(\sqrt[7]{21}\) [Seventh root of 21]


 Exponents

Exponents

Laws of Exponents

Rational Exponent

Integral Exponents of a Rational Numbers

Solved Examples on Exponents

Practice Test on Exponents


 Exponents - Worksheets

Worksheet on Exponents












8th Grade Math Practice

From Laws of Exponents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Oct 21, 24 03:38 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More

  2. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Oct 21, 24 02:26 AM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More

  3. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Oct 21, 24 02:16 AM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  4. Concept of Multiplication | What is Multiplication? | Basics Math

    Oct 21, 24 01:05 AM

    Multiplication Fact 8 × 2
    Multiplication is repeated addition of a number to itself. Study the following example to understand it: Example: Take 3 groups of 2 pens each as shown below. How many pens are there in all?

    Read More

  5. Properties of Multiplication | Multiplicative Identity | Whole Numbers

    Oct 21, 24 12:50 AM

    Properties of Multiplication of Whole Numbers
    There are six properties of multiplication of whole numbers that will help to solve the problems easily. The six properties of multiplication are Closure Property, Commutative Property, Zero Property…

    Read More