Processing math: 100%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Laws of Exponents

The laws of exponents are explained here along with their examples.

1. Multiplying Powers with same Base

For example: x² × x³, 2³ × 2⁵, (-3)² × (-3)⁴

In multiplication of exponents if the bases are same then we need to add the exponents.

Consider the following: 

1. 2³ × 2² = (2 × 2 × 2) × (2 × 2) = 23+2 = 2⁵

2. 3⁴ × 3² = (3 × 3 × 3 × 3) × (3 × 3) = 34+2 = 3⁶

3. (-3)³ × (-3)⁴ = [(-3) × (-3) × (-3)] × [(-3) × (-3) × (-3) × (-3)]

                        = (-3)3+4 

                        = (-3)⁷


4. m⁵ × m³ = (m × m × m × m × m) × (m × m × m)

                  = m5+3 

                  = m⁸


From the above examples, we can generalize that during multiplication when the bases are same then the exponents are added. 

aᵐ × aⁿ = am+n

In other words, if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, then

aᵐ × aⁿ = am+n


Similarly, (ab)ᵐ × (ab)ⁿ = (ab)m+n

(ab)m×(ab)n=(ab)m+n


Note: 

(i) Exponents can be added only when the bases are same. 

(ii) Exponents cannot be added if the bases are not same like

m⁵ × n⁷, 2³ × 3⁴

Multiplying Powers with same Base, Laws of Exponents

For example:

1. 5³ ×5⁶

= (5 × 5 × 5) × (5 × 5 × 5 × 5 × 5 × 5)

= 53+6, [here the exponents are added] 

= 5⁹


2. (-7)10 × (-7)¹²

= [(-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)] × [( -7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)].

= (-7)10+12[Exponents are added] 

= (-7)²²


3. (12)4 × (12)3

=[(12) × (12) × (12) × (12)] × [(12) × (12) × (12)] 


=(12)4+3

=(12)⁷


4. 3² × 3⁵

= 32+5

= 3⁷


5. (-2)⁷ × (-2)³

= (-2)7+3

= (-2)10



6. (49)³ × (49

= (49)3+2

= (49)⁵


We observe that the two numbers with the same base are

multiplied; the product is obtained by adding the exponent.


2. Dividing Powers with the same Base

For example: 

3⁵ ÷ 3¹, 2² ÷ 2¹, 5(²) ÷ 5³

In division if the bases are same then we need to subtract the exponents. 

Consider the following: 

2⁷ ÷ 2⁴ = 2724

            = 2×2×2×2×2×2×22×2×2×2

            = 274

            = 2³

5⁶ ÷ 5² = 5652

            = = 5×5×5×5×5×55×5

            = 562 

            = 5⁴


10⁵ ÷ 10³ = 105103

                = 10×10×10×10×1010×10×10

                = 1053

                = 10²


7⁴ ÷ 7⁵ = 7475

            = 7×7×7×77×7×7×7×7

            = 745 

            = 71


Let a be a non zero number, then

a⁵ ÷ a³ = a5a3

            = a×a×a×a×aa×a×a

            = a53 

            = a²


again, a³ ÷ a⁵ = a3a5

                     = a×a×aa×a×a×a×a

                     = a(53)

                     = a2

Thus, in general, for any non-zero integer a, 

aᵐ ÷ aⁿ = aman = amn


Note 1: 

Where m and n are whole numbers and m > n; 

aᵐ ÷ aⁿ = aman = a(nm)


Note 2: 

Where m and n are whole numbers and m < n; 

We can generalize that if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, such that m > n, then 

aᵐ ÷ aⁿ = amn if m < n, then aᵐ ÷ aⁿ = 1anm

Similarly, (ab)m ÷ (ab)n = ab mn

Dividing Powers with the same Base, Laws of Exponents

For example:

1. 710 ÷ 7⁸ = 71078

                             = 7×7×7×7×7×7×7×7×7×77×7×7×7×7×7×7×7

                             = 7108, [here exponents are subtracted] 

                             = 7²


2. p⁶ ÷ p¹ = p6p1

               = p×p×p×p×p×pp

               = p61, [here exponents are subtracted] 

               = p⁵


3. 4⁴ ÷ 4² = 4442

                = 4×4×4×44×4

                = 442, [here exponents are subtracted] 

                = 4²


4. 10² ÷ 10⁴ = 102104

                   = 10×1010×10×10×10

                   = 10(42)[See note (2)] 

                   = 102


5. 5³ ÷ 5¹

= 531

= 5²



6. (3)5(3)2

= 352

= 3³


7. (5)9(5)6

= (-5)96

= (-5)³


8. (72)⁸ ÷ (72)⁵

= (72)85

= (72


Laws of Exponents or Indices

3. Power of a Power

For example: (2³)², (5²)⁶, (3² )3

In power of a power you need multiply the powers.

Consider the following

(i) (2³)⁴

Now, (2³)⁴ means 2³ is multiplied four times

i.e. (2³)⁴ = 2³ × 2³ × 2³ × 2³

=23+3+3+3

=2¹²

Note: by law (l), since aᵐ × aⁿ = am+n.



(ii) (2³)²

Similarly, now (2³)² means 2³ is multiplied two times

i.e. (2³)² = 2³ × 2³

= 23+3, [since aᵐ × aⁿ = am+n

= 2⁶

Note: Here, we see that 6 is the product of 3 and 2 i.e,

                         (2³)² = 23×2= 2⁶



(iii) (42


Similarly, now (42)³ means 42

 is multiplied three times


i.e. (42)³ =42 × 42 × 42

= 42+(2)+(2)

= 4222

= 46

Note: Here, we see that -6 is the product of -2 and 3 i.e,

                (42)³ = 42×3 = 46


For example:

1.(3²)⁴ = 32×4 = 3⁸

2. (5³)⁶ = 53×6 = 5¹⁸

3. (4³)⁸ = 43×8 = 4²⁴

4. (aᵐ)⁴ = am×4 = a⁴ᵐ

5. (2³)⁶ = 23×6 = 2¹⁸

6. (xᵐ)n = xm×(n) = xmn

7. (5²)⁷ = 52×7 = 5¹⁴

8. [(-3)⁴]² = (-3)4×2 = (-3)⁸


In general, for any non-integer a, (aᵐ)ⁿ= am×n = amn

Thus where m and n are whole numbers. 


If ‘a’ is a non-zero rational number and m and n are positive integers, then {(ab)ᵐ}ⁿ = (ab)mn

Power of a Power, Laws of Exponents

For example:

[(25)³]²

= (25)3×2

= (25)⁶


4. Multiplying Powers with the same Exponents

For example: 3² × 2², 5³ × 7³

We consider the product of 4² and 3², which have different bases, but the same exponents. 

(i) 4² × 3² [here the powers are same and the bases are different] 

= (4 × 4) × (3 × 3) 

= (4 × 3) × (4 × 3) 

= 12 × 12

= 12²

Here, we observe that in 12², the base is the product of bases 4 and 3. 

Multiplying Powers with the same Exponents, Exponent Rules

We consider, 

(ii) 4³ × 2³

= (4 × 4 × 4) × (2 × 2 × 2)

= (4 × 2)× ( 4 × 2) × (4 × 2)

= 8 × 8 × 8

= 8³



(iii) We also have, 2³ × a³

= (2 × 2 × 2) × (a × a × a)

= (2 × a) × (2 × a) × (2 × a)

= (2 × a)³

= (2a)³ [Here 2 × a = 2a]



(iv) Similarly, we have, a³ × b³

= (a × a × a) × (b × b × b)

= (a × b) × (a × b) × (a × b)

= (a × b)³

= (ab)³ [Here a × b = ab]

Note: In general, for any non-zero integer a, b.

aᵐ × bᵐ

= (a × b)ᵐ

= (ab)ᵐ [Here a × b = ab]


aᵐ × bᵐ = (ab)ᵐ


Note: Where m is any whole number.

(-a)³ × (-b)³

= [(-a) × (-a) × (-a)] × [(-b) × (-b) × (-b)]

= [(-a) × (-b)] × [(-a) × (-b)] × [(-a) × (-b)]

= [(-a) × (-b)]³

= (ab)³, [Here a × b = ab and two negative become positive, (-) × (-) = +]



5. Negative Exponents

If the exponent is negative we need to change it into positive exponent by writing the same in the denominator and 1 in the numerator.

If ‘a’ is a non-zero integer or a non-zero rational number and m is a positive integers, then am is the reciprocal of aᵐ, i.e., 


am = 1am, if we take ‘a’ as pq then (pq)m = 1(pq)m = (qp)ᵐ


again, 1am = aᵐ


Similarly, (ab)n = (ba)ⁿ, where n is a positive integer


Consider the following

21 = 12

22 = 122 = 12 × 12 = 14

23 = 123 = 12 × 12 × 12 = 18

24 = 124 = 12 × 12 × 12 × 12  = 116

25 = 125 = 12 × 12 × 12 × 12 × 12132


[So in negative exponent we need to write 1 in the numerator and in the denominator 2 multiplied to itself five times as 25. In other words negative exponent is the reciprocal of positive exponent] 

Negative Exponents, Laws of Exponents

For example:

1. 103

= 1103, [here we can see that 1 is in the numerator and in the denominator 10³ as we know that negative exponent is the reciprocal] 

= 110 × 110 × 110, [Here 10 is multiplied to itself 3 times] 

= 11000



2. (-2)4

= 1(2)4 [Here we can see that 1 is in the numerator and in the denominator (-2)⁴] 

= (- 12) × (- 12) × (- 12) × (- 12

= 116


3. 25

= 125

= 12 × 12

= 14



4. 134

= 3⁴

= 3 × 3 × 3 × 3

= 81


5. (-7)3

1(7)3



6. (35)3

= (53



7. (-72)2

= (-27


6. Power with Exponent Zero

If the exponent is 0 then you get the result 1 whatever the base is. 

For example: 80, (ab)0, m0…....


If ‘a’ is a non-zero integer or a non-zero rational number then, 

a0 = 1


Similarly, (ab)0 = 1


Consider the following

a0 = 1 [anything to the power 0 is 1] 

(ab)0 = 1

(23)0 = 1

(-3)0 = 1

Power with Exponent Zero, Laws of Exponents

For example:

1. (23)³ × (23)3

= (23)3+(3), [Here we know that aᵐ × aⁿ = am+n

= (23)33

= (23)0

= 1



2. 2⁵ ÷ 2⁵

2525

= 2×2×2×2×22×2×2×2×2

= 255, [Here by the law aᵐ ÷ aⁿ =amn

= 2

= 1




3. 40 × 30

= 1 × 1, [Here as we know anything to the power 0 is 1]

= 1


4. aᵐ × am

= amm

= a0

= 1


5. 50 = 1

6. (49)0 = 1

7. (-41)0 = 1

8. (37)0 = 1



7. Fractional Exponent

In fractional exponent we observe that the exponent is in fraction form.

a1n, [Here a is called the base and 1n is called the exponent or power]

na, [nth root of a] 

a1n=na



Consider the following:

211 = 2 (it will remain 2). 

212 = √2 (square root of 2).

213 = ∛2 (cube root of 2).

214 = ∜2 (fourth root of 2).

215 = 52 (fifth root of 2). 

Fractional Exponent, Laws of Exponents

For example:

1. 212 = √2 (square root of 2). 

2. 312 = √3 [square root of 3] 

3. 513 = ∛5 [cube root of 5]

4. 1013 = ∛10 [cube root of 10]

5. 2117 = 721 [Seventh root of 21]


 Exponents

Exponents

Laws of Exponents

Rational Exponent

Integral Exponents of a Rational Numbers

Solved Examples on Exponents

Practice Test on Exponents


 Exponents - Worksheets

Worksheet on Exponents












8th Grade Math Practice

From Laws of Exponents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    May 07, 25 01:48 AM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  2. Dividing Decimals Word Problems Worksheet | Answers |Decimals Division

    May 07, 25 01:33 AM

    Dividing Decimals Word Problems Worksheet
    In dividing decimals word problems worksheet we will get different types of problems on decimals division word problems, dividing a decimal by a whole number, dividing a decimals and dividing a decima…

    Read More

  3. How to Divide Decimals? | Dividing Decimals by Decimals | Examples

    May 06, 25 01:23 AM

    Dividing a Decimal by a Whole Number
    Dividing Decimals by Decimals I. Dividing a Decimal by a Whole Number: II. Dividing a Decimal by another Decimal: If the dividend and divisor are both decimal numbers, we multiply both the numbers by…

    Read More

  4. Multiplying Decimal by a Whole Number | Step-by-step Explanation|Video

    May 06, 25 12:01 AM

    Multiplying decimal by a whole number is just same like multiply as usual. How to multiply a decimal by a whole number? To multiply a decimal by a whole number follow the below steps

    Read More

  5. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 05, 25 01:27 AM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More