Subscribe to our YouTube channel for the latest videos, updates, and tips.


Laws of Exponents

The laws of exponents are explained here along with their examples.

1. Multiplying Powers with same Base

For example: x² × x³, 2³ × 2⁵, (-3)² × (-3)⁴

In multiplication of exponents if the bases are same then we need to add the exponents.

Consider the following: 

1. 2³ × 2² = (2 × 2 × 2) × (2 × 2) = 2\(^{3 + 2}\) = 2⁵

2. 3⁴ × 3² = (3 × 3 × 3 × 3) × (3 × 3) = 3\(^{4 + 2}\) = 3⁶

3. (-3)³ × (-3)⁴ = [(-3) × (-3) × (-3)] × [(-3) × (-3) × (-3) × (-3)]

                        = (-3)\(^{3 + 4}\) 

                        = (-3)⁷


4. m⁵ × m³ = (m × m × m × m × m) × (m × m × m)

                  = m\(^{5 + 3}\) 

                  = m⁸


From the above examples, we can generalize that during multiplication when the bases are same then the exponents are added. 

aᵐ × aⁿ = a\(^{m + n}\)

In other words, if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, then

aᵐ × aⁿ = a\(^{m + n}\)


Similarly, (\(\frac{a}{b}\))ᵐ × (\(\frac{a}{b}\))ⁿ = (\(\frac{a}{b}\))\(^{m + n}\)

\[(\frac{a}{b})^{m} \times (\frac{a}{b})^{n} = (\frac{a}{b})^{m + n}\]


Note: 

(i) Exponents can be added only when the bases are same. 

(ii) Exponents cannot be added if the bases are not same like

m⁵ × n⁷, 2³ × 3⁴

Multiplying Powers with same Base, Laws of Exponents

For example:

1. 5³ ×5⁶

= (5 × 5 × 5) × (5 × 5 × 5 × 5 × 5 × 5)

= 5\(^{3 + 6}\), [here the exponents are added] 

= 5⁹


2. (-7)\(^{10}\) × (-7)¹²

= [(-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)] × [( -7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7) × (-7)].

= (-7)\(^{10 + 12}\), [Exponents are added] 

= (-7)²²


3. \((\frac{1}{2})^{4}\) × \((\frac{1}{2})^{3}\)

=[(\(\frac{1}{2}\)) × (\(\frac{1}{2}\)) × (\(\frac{1}{2}\)) × (\(\frac{1}{2}\))] × [(\(\frac{1}{2}\)) × (\(\frac{1}{2}\)) × (\(\frac{1}{2}\))] 


=(\(\frac{1}{2}\))\(^{4 + 3}\)

=(\(\frac{1}{2}\))⁷


4. 3² × 3⁵

= 3\(^{2 + 5}\)

= 3⁷


5. (-2)⁷ × (-2)³

= (-2)\(^{7 + 3}\)

= (-2)\(^{10}\)



6. (\(\frac{4}{9}\))³ × (\(\frac{4}{9}\))²

= (\(\frac{4}{9}\))\(^{3 + 2}\)

= (\(\frac{4}{9}\))⁵


We observe that the two numbers with the same base are

multiplied; the product is obtained by adding the exponent.


2. Dividing Powers with the same Base

For example: 

3⁵ ÷ 3¹, 2² ÷ 2¹, 5(²) ÷ 5³

In division if the bases are same then we need to subtract the exponents. 

Consider the following: 

2⁷ ÷ 2⁴ = \(\frac{2^{7}}{2^{4}}\)

            = \(\frac{2 × 2 × 2 × 2 × 2 × 2 × 2}{2 × 2 × 2 × 2}\)

            = 2\(^{7 - 4}\)

            = 2³

5⁶ ÷ 5² = \(\frac{5^{6}}{5^{2}}\)

            = = \(\frac{5 × 5 × 5 × 5 × 5 × 5}{5 × 5}\)

            = 5\(^{6 - 2}\) 

            = 5⁴


10⁵ ÷ 10³ = \(\frac{10^{5}}{10^{3}}\)

                = \(\frac{10 × 10 × 10 × 10 × 10}{10 × 10 × 10}\)

                = 10\(^{5 - 3}\)

                = 10²


7⁴ ÷ 7⁵ = \(\frac{7^{4}}{7^{5}}\)

            = \(\frac{7 × 7 × 7 × 7}{7 × 7 × 7 × 7 × 7}\)

            = 7\(^{4 - 5}\) 

            = 7\(^{-1}\)


Let a be a non zero number, then

a⁵ ÷ a³ = \(\frac{a^{5}}{a^{3}}\)

            = \(\frac{a × a × a × a × a}{a × a × a}\)

            = a\(^{5 - 3}\) 

            = a²


again, a³ ÷ a⁵ = \(\frac{a^{3}}{a^{5}}\)

                     = \(\frac{a × a × a}{a × a × a × a × a}\)

                     = a\(^{-(5 - 3)}\)

                     = a\(^{-2}\)

Thus, in general, for any non-zero integer a, 

aᵐ ÷ aⁿ = \(\frac{a^{m}}{a^{n}}\) = a\(^{m - n}\)


Note 1: 

Where m and n are whole numbers and m > n; 

aᵐ ÷ aⁿ = \(\frac{a^{m}}{a^{n}}\) = a\(^{-(n - m)}\)


Note 2: 

Where m and n are whole numbers and m < n; 

We can generalize that if ‘a’ is a non-zero integer or a non-zero rational number and m and n are positive integers, such that m > n, then 

aᵐ ÷ aⁿ = a\(^{m - n}\) if m < n, then aᵐ ÷ aⁿ = \(\frac{1}{a^{n - m}}\)

Similarly, \((\frac{a}{b})^{m}\) ÷ \((\frac{a}{b})^{n}\) = \(\frac{a}{b}\) \(^{m - n}\)

Dividing Powers with the same Base, Laws of Exponents

For example:

1. 7\(^{10}\) ÷ 7⁸ = \(\frac{7^{10}}{7^{8}}\)

                             = \(\frac{7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7}{7 × 7 × 7 × 7 × 7 × 7 × 7 × 7}\)

                             = 7\(^{10 - 8}\), [here exponents are subtracted] 

                             = 7²


2. p⁶ ÷ p¹ = \(\frac{p^{6}}{p^{1}}\)

               = \(\frac{p × p × p × p × p × p}{p}\)

               = p\(^{6 - 1}\), [here exponents are subtracted] 

               = p⁵


3. 4⁴ ÷ 4² = \(\frac{4^{4}}{4^{2}}\)

                = \(\frac{4 × 4 × 4 × 4}{4 × 4}\)

                = 4\(^{4 - 2}\), [here exponents are subtracted] 

                = 4²


4. 10² ÷ 10⁴ = \(\frac{10^{2}}{10^{4}}\)

                   = \(\frac{10 × 10}{10 × 10 × 10 × 10}\)

                   = 10\(^{-(4 - 2)}\), [See note (2)] 

                   = 10\(^{-2}\)


5. 5³ ÷ 5¹

= 5\(^{3 - 1}\)

= 5²



6. \(\frac{(3)^{5}}{(3)^{2}}\)

= 3\(^{5 - 2}\)

= 3³


7. \(\frac{(-5)^{9}}{(-5)^{6}}\)

= (-5)\(^{9 - 6}\)

= (-5)³


8. (\(\frac{7}{2}\))⁸ ÷ (\(\frac{7}{2}\))⁵

= (\(\frac{7}{2}\))\(^{8 - 5}\)

= (\(\frac{7}{2}\))³


Laws of Exponents or Indices

3. Power of a Power

For example: (2³)², (5²)⁶, (3² )\(^{-3}\)

In power of a power you need multiply the powers.

Consider the following

(i) (2³)⁴

Now, (2³)⁴ means 2³ is multiplied four times

i.e. (2³)⁴ = 2³ × 2³ × 2³ × 2³

=2\(^{3 + 3 + 3 + 3}\)

=2¹²

Note: by law (l), since aᵐ × aⁿ = a\(^{m + n}\).



(ii) (2³)²

Similarly, now (2³)² means 2³ is multiplied two times

i.e. (2³)² = 2³ × 2³

= 2\(^{3 + 3}\), [since aᵐ × aⁿ = a\(^{m + n}\)] 

= 2⁶

Note: Here, we see that 6 is the product of 3 and 2 i.e,

                         (2³)² = 2\(^{3 × 2}\)= 2⁶



(iii) (4\(^{- 2}\))³


Similarly, now (4\(^{-2}\))³ means 4\(^{-2}\)

 is multiplied three times


i.e. (4\(^{-2}\))³ =4\(^{-2}\) × 4\(^{-2}\) × 4\(^{-2}\)

= 4\(^{-2 + (-2) + (-2)}\)

= 4\(^{-2 - 2 - 2}\)

= 4\(^{-6}\)

Note: Here, we see that -6 is the product of -2 and 3 i.e,

                (4\(^{-2}\))³ = 4\(^{-2 × 3}\) = 4\(^{-6}\)


For example:

1.(3²)⁴ = 3\(^{2 × 4}\) = 3⁸

2. (5³)⁶ = 5\(^{3 × 6}\) = 5¹⁸

3. (4³)⁸ = 4\(^{3 × 8}\) = 4²⁴

4. (aᵐ)⁴ = a\(^{m × 4}\) = a⁴ᵐ

5. (2³)⁶ = 2\(^{3 × 6}\) = 2¹⁸

6. (xᵐ)\(^{-n}\) = x\(^{m × -(n)}\) = x\(^{-mn}\)

7. (5²)⁷ = 5\(^{2 × 7}\) = 5¹⁴

8. [(-3)⁴]² = (-3)\(^{4 × 2}\) = (-3)⁸


In general, for any non-integer a, (aᵐ)ⁿ= a\(^{m × n}\) = a\(^{mn}\)

Thus where m and n are whole numbers. 


If ‘a’ is a non-zero rational number and m and n are positive integers, then {(\(\frac{a}{b}\))ᵐ}ⁿ = (\(\frac{a}{b}\))\(^{mn}\)

Power of a Power, Laws of Exponents

For example:

[(\(\frac{-2}{5}\))³]²

= (\(\frac{-2}{5}\))\(^{3 × 2}\)

= (\(\frac{-2}{5}\))⁶


4. Multiplying Powers with the same Exponents

For example: 3² × 2², 5³ × 7³

We consider the product of 4² and 3², which have different bases, but the same exponents. 

(i) 4² × 3² [here the powers are same and the bases are different] 

= (4 × 4) × (3 × 3) 

= (4 × 3) × (4 × 3) 

= 12 × 12

= 12²

Here, we observe that in 12², the base is the product of bases 4 and 3. 

Multiplying Powers with the same Exponents, Exponent Rules

We consider, 

(ii) 4³ × 2³

= (4 × 4 × 4) × (2 × 2 × 2)

= (4 × 2)× ( 4 × 2) × (4 × 2)

= 8 × 8 × 8

= 8³



(iii) We also have, 2³ × a³

= (2 × 2 × 2) × (a × a × a)

= (2 × a) × (2 × a) × (2 × a)

= (2 × a)³

= (2a)³ [Here 2 × a = 2a]



(iv) Similarly, we have, a³ × b³

= (a × a × a) × (b × b × b)

= (a × b) × (a × b) × (a × b)

= (a × b)³

= (ab)³ [Here a × b = ab]

Note: In general, for any non-zero integer a, b.

aᵐ × bᵐ

= (a × b)ᵐ

= (ab)ᵐ [Here a × b = ab]


aᵐ × bᵐ = (ab)ᵐ


Note: Where m is any whole number.

(-a)³ × (-b)³

= [(-a) × (-a) × (-a)] × [(-b) × (-b) × (-b)]

= [(-a) × (-b)] × [(-a) × (-b)] × [(-a) × (-b)]

= [(-a) × (-b)]³

= (ab)³, [Here a × b = ab and two negative become positive, (-) × (-) = +]



5. Negative Exponents

If the exponent is negative we need to change it into positive exponent by writing the same in the denominator and 1 in the numerator.

If ‘a’ is a non-zero integer or a non-zero rational number and m is a positive integers, then a\(^{-m}\) is the reciprocal of aᵐ, i.e., 


a\(^{-m}\) = \(\frac{1}{a^{m}}\), if we take ‘a’ as \(\frac{p}{q}\) then (\(\frac{p}{q}\))\(^{-m}\) = \(\frac{1}{(\frac{p}{q})^{m}}\) = (\(\frac{q}{p}\))ᵐ


again, \(\frac{1}{a^{-m}}\) = aᵐ


Similarly, (\(\frac{a}{b}\))\(^{-n}\) = (\(\frac{b}{a}\))ⁿ, where n is a positive integer


Consider the following

2\(^{-1}\) = \(\frac{1}{2}\)

2\(^{-2}\) = \(\frac{1}{2^{2}}\) = \(\frac{1}{2}\) × \(\frac{1}{2}\) = \(\frac{1}{4}\)

2\(^{-3}\) = \(\frac{1}{2^{3}}\) = \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) = \(\frac{1}{8}\)

2\(^{-4}\) = \(\frac{1}{2^{4}}\) = \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\)  = \(\frac{1}{16}\)

2\(^{-5}\) = \(\frac{1}{2^{5}}\) = \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) × \(\frac{1}{2}\) = \(\frac{1}{32}\)


[So in negative exponent we need to write 1 in the numerator and in the denominator 2 multiplied to itself five times as 2\(^{-5}\). In other words negative exponent is the reciprocal of positive exponent] 

Negative Exponents, Laws of Exponents

For example:

1. 10\(^{-3}\)

= \(\frac{1}{10^{3}}\), [here we can see that 1 is in the numerator and in the denominator 10³ as we know that negative exponent is the reciprocal] 

= \(\frac{1}{10}\) × \(\frac{1}{10}\) × \(\frac{1}{10}\), [Here 10 is multiplied to itself 3 times] 

= \(\frac{1}{1000}\)



2. (-2)\(^{-4}\)

= \(\frac{1}{(-2)^{4}}\) [Here we can see that 1 is in the numerator and in the denominator (-2)⁴] 

= (- \(\frac{1}{2}\)) × (- \(\frac{1}{2}\)) × (- \(\frac{1}{2}\)) × (- \(\frac{1}{2}\)) 

= \(\frac{1}{16}\)


3. 2\(^{-5}\)

= \(\frac{1}{2^{5}}\)

= \(\frac{1}{2}\) × \(\frac{1}{2}\)

= \(\frac{1}{4}\)



4. \(\frac{1}{3^{-4}}\)

= 3⁴

= 3 × 3 × 3 × 3

= 81


5. (-7)\(^{-3}\)

= \(\frac{1}{(-7)^{3}}\)



6. (\(\frac{3}{5}\))\(^{-3}\)

= (\(\frac{5}{3}\))³



7. (-\(\frac{7}{2}\))\(^{-2}\)

= (-\(\frac{2}{7}\))²


6. Power with Exponent Zero

If the exponent is 0 then you get the result 1 whatever the base is. 

For example: 8\(^{0}\), (\(\frac{a}{b}\))\(^{0}\), m\(^{0}\)…....


If ‘a’ is a non-zero integer or a non-zero rational number then, 

a\(^{0}\) = 1


Similarly, (\(\frac{a}{b}\))\(^{0}\) = 1


Consider the following

a\(^{0}\) = 1 [anything to the power 0 is 1] 

(\(\frac{a}{b}\))\(^{0}\) = 1

(\(\frac{-2}{3}\))\(^{0}\) = 1

(-3)\(^{0}\) = 1

Power with Exponent Zero, Laws of Exponents

For example:

1. (\(\frac{2}{3}\))³ × (\(\frac{2}{3}\))\(^{-3}\)

= (\(\frac{2}{3}\))\(^{3 + (-3)}\), [Here we know that aᵐ × aⁿ = a\(^{m + n}\)] 

= (\(\frac{2}{3}\))\(^{3 - 3}\)

= (\(\frac{2}{3}\))\(^{0}\)

= 1



2. 2⁵ ÷ 2⁵

\(\frac{2^{5}}{2^{5}}\)

= \(\frac{2 × 2 × 2 × 2 × 2}{2 × 2 × 2 × 2 × 2}\)

= 2\(^{5 - 5}\), [Here by the law aᵐ ÷ aⁿ =a\(^{m - n}\)] 

= 2

= 1




3. 4\(^{0}\) × 3\(^{0}\)

= 1 × 1, [Here as we know anything to the power 0 is 1]

= 1


4. aᵐ × a\(^{-m}\)

= a\(^{m - m}\)

= a\(^{0}\)

= 1


5. 5\(^{0}\) = 1

6. (\(\frac{-4}{9}\))\(^{0}\) = 1

7. (-41)\(^{0}\) = 1

8. (\(\frac{3}{7}\))\(^{0}\) = 1



7. Fractional Exponent

In fractional exponent we observe that the exponent is in fraction form.

a\(^{\frac{1}{n}}\), [Here a is called the base and \(\frac{1}{n}\) is called the exponent or power]

= \(\sqrt[n]{a}\), [nth root of a] 

\[a^{\frac{1}{n}} = \sqrt[n]{a}\]



Consider the following:

2\(^{\frac{1}{1}}\) = 2 (it will remain 2). 

2\(^{\frac{1}{2}}\) = √2 (square root of 2).

2\(^{\frac{1}{3}}\) = ∛2 (cube root of 2).

2\(^{\frac{1}{4}}\) = ∜2 (fourth root of 2).

2\(^{\frac{1}{5}}\) = \(\sqrt[5]{2}\) (fifth root of 2). 

Fractional Exponent, Laws of Exponents

For example:

1. 2\(^{\frac{1}{2}}\) = √2 (square root of 2). 

2. 3\(^{\frac{1}{2}}\) = √3 [square root of 3] 

3. 5\(^{\frac{1}{3}}\) = ∛5 [cube root of 5]

4. 10\(^{\frac{1}{3}}\) = ∛10 [cube root of 10]

5. 21\(^{\frac{1}{7}}\) = \(\sqrt[7]{21}\) [Seventh root of 21]


 Exponents

Exponents

Laws of Exponents

Rational Exponent

Integral Exponents of a Rational Numbers

Solved Examples on Exponents

Practice Test on Exponents


 Exponents - Worksheets

Worksheet on Exponents












8th Grade Math Practice

From Laws of Exponents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Rounding Decimals | Questions Related to Round a Decimal

    May 14, 25 04:21 PM

    The worksheet on rounding decimals would be really good for the students to practice huge number of questions related to round a decimal. This worksheet include questions related

    Read More

  2. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 14, 25 03:01 PM

    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More

  3. Worksheet on Rounding Off Number | Rounding off Number | Nearest 10

    May 14, 25 12:50 PM

    In worksheet on rounding off number we will solve 10 different types of problems. 1. Round off to nearest 10 each of the following numbers: (a) 14 (b) 57 (c) 61 (d) 819 (e) 7729 2. Round off to

    Read More

  4. Rounding Off to the Nearest Whole Number | Nearest 10, 100, and 1000

    May 13, 25 03:43 PM

    Nearest Ten
    Here we will learn how to rounding off to the nearest whole number?

    Read More

  5. Conversion of Improper Fractions into Mixed Fractions |Solved Examples

    May 12, 25 04:52 AM

    Conversion of Improper Fractions into Mixed Fractions
    In conversion of improper fractions into mixed fractions, we follow the following steps: Step I: Obtain the improper fraction. Step II: Divide the numerator by the denominator and obtain the quotient…

    Read More