Solved Examples on Exponents

Here are some solved examples on exponents using the laws of exponents.

1. Evaluate the exponent:

(i) 5-3

(ii) (1/3)-4

(iii) (5/2)-3

(iv) (-2)-5

(v) (-3/4)-4

We have:

(i) 5-3 = 1/53 = 1/125

(ii) (1/3)-4 = (3/1)4 = 34 = 81



(iii) (5/2)-3 = (2/5)3 = 23/53 = 8/125

(iv) (-2)-5 = 1/(-2)-5 = 1/-25 = 1/-32 = -1/32

(v) (-3/4)-4 = (4/-3)4 = (-4/3)4 = (-4)4/34 = 44/34 = 256/81



2. Evaluate: (-2/7)-4 × (-5/7)2

Solution:

(-2/7)-4 × (-5/7)2

= (7/-2)4 × (-5/7)2

= (-7/2)4 × (-5/7)2 [Since, (7/-2) = (-7/2)]

= (-7)4/24 × (-5)2/72

= {74 × (-5)2}/{24 × 72 } [Since, (-7)4 = 74]

= {72 × (-5)2 }/24

= [49 × (-5) × (-5)]/16

= 1225/16



3. Evaluate: (-1/4)-3 × (-1/4)-2

Solution:


(-1/4)-3 × (-1/4)-2

= (4/-1)3 × (4/-1)2

= (-4)3 × (-4)2

= (-4)(3 + 2)

= (-4)5

= -45

= -1024.



4. Evaluate: {[(-3)/2]2}-3

Solution:


{[(-3)/2]2}-3

= (-3/2)2 × (-3)

= (-3/2)-6

= (2/-3)6

= (-2/3)6

= (-2)6/36

= 26/36

= 64/729



5. Simplify:

(i) (2-1 × 5-1)-1 ÷ 4-1

(ii) (4-1 + 8-1) ÷ (2/3)-1

Solution:

(i) (2-1 × 5-1)-1 ÷ 4-1

= (1/2 × 1/5)-1 ÷ (4/1)-1

= (1/10)-1 ÷ (1/4)

= 10/1 ÷ 1/4

= (10 ÷ 1/4)

= (10 × 4)

= 40.


(ii) (4-1 + 8-1) ÷ (2/3)-1

= (1/4 + 1/8) ÷ (3/2)

= (2 + 1)/8 ÷ 3/2

= (3/8 ÷ 3/2)

= (3/8 ÷ 2/3)

= 1/4




6. Simplify: (1/2)-2 + (1/3)-2 + (1/4)-2

Solution:


(1/2)-2 + (1/3)-2 + (1/4)-2

= (2/1)2 + (3/1)2 + (4/1)2

= (22 + 32 + 42)

= (4 + 9 + 16)

= 29.



7. By what number should (1/2)-1 be multiplied so that the product is (-5/4)-1?

Solution:


Let the required number be x. Then,

x × (1/2)-1 = (-5/4)-1

⇒ x × (2/1) = (4/-5)

⇒ 2x = -4/5

⇒ x = (1/2 × -4/5) = -2/5

Hence, the required number is -2/5.



8. By what number should (-3/2)-3 be divided so that the quotient is (9/4)-2?

Solution:


Let the required number be x. Then,

(-3/2)-3/x = (9/4)-2

⇒ (-2/3)3 = (4/9)2 × x

⇒ (-2)3/33 = 42/92 × x

⇒ -8/27 = 16/81 × x

⇒ x = {-8/27 × 81/16}

⇒ x = -3/2

Hence, the required number is -3/2



9. If a = (2/5)2 ÷ (9/5)0 find the value of a-3.

Solution:


a-3 = [(2/5)2 ÷ (9/5)0]-3

= [(2/5)2 ÷ 1]-3

= [(2/5)2]-3

= (2/5)-6

= (5/2)6



10. Find the value of n, when 3-7 ×32n + 3 = 311 ÷ 35

Solution:


32n + 3 = 311 ÷ 35/3-7

⇒ 32n + 3 = 311 - 5/3-7

⇒ 32n + 3 = 36/3-7

⇒ 32n + 3 = 36 - (-7)

⇒ 32n + 3 = 36 + 7

⇒ 32n + 3 = 313

Since the bases are same and equating the powers, we get 2n + 3 = 13

2n = 13 – 3

2n = 10

n = 10/2

Therefore, n = 5



11. Find the value of n, when (5/3)2n + 1 (5/3)5 = (5/3)n + 2

Solution:


(5/3)2n + 1 + 5 = (5/3)n + 2

= (5/3)2n + 6 = (5/3)n + 2

Since the bases are same and equating the powers, we get 2n + 6 = n + 2

2n – n = 2 – 6

=> n = -4



12. Find the value of n, when 3n = 243

Solution:


3n = 35

Since, the bases are same, so omitting the bases, and equating the powers we get, n = 5.



13. Find the value of n, when 271/n = 3

Solution:


(27) = 3n

⇒ (3)3 = 3n

Since, the bases are same and equating the powers, we get

⇒ n = 3



14. Find the value of n, when 3432/n = 49

Solution:


[(7)3]2/n = (7)2

⇒ (7)6/n = (7)2

⇒ 6/n = 2

Since, the bases are same and equating the powers, we get n = 6/2 = 3.


 Exponents

Exponents

Laws of Exponents

Rational Exponent

Integral Exponents of a Rational Numbers

Solved Examples on Exponents

Practice Test on Exponents


 Exponents - Worksheets

Worksheet on Exponents











8th Grade Math Practice

From Solved Examples on Exponents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  2. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  3. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More

  4. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Apr 26, 25 03:48 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  5. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Apr 26, 25 01:00 PM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More