Solved Examples on Exponents

Here are some solved examples on exponents using the laws of exponents.

1. Evaluate the exponent:

(i) 5-3

(ii) (1/3)-4

(iii) (5/2)-3

(iv) (-2)-5

(v) (-3/4)-4

We have:

(i) 5-3 = 1/53 = 1/125

(ii) (1/3)-4 = (3/1)4 = 34 = 81



(iii) (5/2)-3 = (2/5)3 = 23/53 = 8/125

(iv) (-2)-5 = 1/(-2)-5 = 1/-25 = 1/-32 = -1/32

(v) (-3/4)-4 = (4/-3)4 = (-4/3)4 = (-4)4/34 = 44/34 = 256/81



2. Evaluate: (-2/7)-4 × (-5/7)2

Solution:

(-2/7)-4 × (-5/7)2

= (7/-2)4 × (-5/7)2

= (-7/2)4 × (-5/7)2 [Since, (7/-2) = (-7/2)]

= (-7)4/24 × (-5)2/72

= {74 × (-5)2}/{24 × 72 } [Since, (-7)4 = 74]

= {72 × (-5)2 }/24

= [49 × (-5) × (-5)]/16

= 1225/16



3. Evaluate: (-1/4)-3 × (-1/4)-2

Solution:


(-1/4)-3 × (-1/4)-2

= (4/-1)3 × (4/-1)2

= (-4)3 × (-4)2

= (-4)(3 + 2)

= (-4)5

= -45

= -1024.



4. Evaluate: {[(-3)/2]2}-3

Solution:


{[(-3)/2]2}-3

= (-3/2)2 × (-3)

= (-3/2)-6

= (2/-3)6

= (-2/3)6

= (-2)6/36

= 26/36

= 64/729



5. Simplify:

(i) (2-1 × 5-1)-1 ÷ 4-1

(ii) (4-1 + 8-1) ÷ (2/3)-1

Solution:

(i) (2-1 × 5-1)-1 ÷ 4-1

= (1/2 × 1/5)-1 ÷ (4/1)-1

= (1/10)-1 ÷ (1/4)

= 10/1 ÷ 1/4

= (10 ÷ 1/4)

= (10 × 4)

= 40.


(ii) (4-1 + 8-1) ÷ (2/3)-1

= (1/4 + 1/8) ÷ (3/2)

= (2 + 1)/8 ÷ 3/2

= (3/8 ÷ 3/2)

= (3/8 ÷ 2/3)

= 1/4




6. Simplify: (1/2)-2 + (1/3)-2 + (1/4)-2

Solution:


(1/2)-2 + (1/3)-2 + (1/4)-2

= (2/1)2 + (3/1)2 + (4/1)2

= (22 + 32 + 42)

= (4 + 9 + 16)

= 29.



7. By what number should (1/2)-1 be multiplied so that the product is (-5/4)-1?

Solution:


Let the required number be x. Then,

x × (1/2)-1 = (-5/4)-1

⇒ x × (2/1) = (4/-5)

⇒ 2x = -4/5

⇒ x = (1/2 × -4/5) = -2/5

Hence, the required number is -2/5.



8. By what number should (-3/2)-3 be divided so that the quotient is (9/4)-2?

Solution:


Let the required number be x. Then,

(-3/2)-3/x = (9/4)-2

⇒ (-2/3)3 = (4/9)2 × x

⇒ (-2)3/33 = 42/92 × x

⇒ -8/27 = 16/81 × x

⇒ x = {-8/27 × 81/16}

⇒ x = -3/2

Hence, the required number is -3/2



9. If a = (2/5)2 ÷ (9/5)0 find the value of a-3.

Solution:


a-3 = [(2/5)2 ÷ (9/5)0]-3

= [(2/5)2 ÷ 1]-3

= [(2/5)2]-3

= (2/5)-6

= (5/2)6



10. Find the value of n, when 3-7 ×32n + 3 = 311 ÷ 35

Solution:


32n + 3 = 311 ÷ 35/3-7

⇒ 32n + 3 = 311 - 5/3-7

⇒ 32n + 3 = 36/3-7

⇒ 32n + 3 = 36 - (-7)

⇒ 32n + 3 = 36 + 7

⇒ 32n + 3 = 313

Since the bases are same and equating the powers, we get 2n + 3 = 13

2n = 13 – 3

2n = 10

n = 10/2

Therefore, n = 5



11. Find the value of n, when (5/3)2n + 1 (5/3)5 = (5/3)n + 2

Solution:


(5/3)2n + 1 + 5 = (5/3)n + 2

= (5/3)2n + 6 = (5/3)n + 2

Since the bases are same and equating the powers, we get 2n + 6 = n + 2

2n – n = 2 – 6

=> n = -4



12. Find the value of n, when 3n = 243

Solution:


3n = 35

Since, the bases are same, so omitting the bases, and equating the powers we get, n = 5.



13. Find the value of n, when 271/n = 3

Solution:


(27) = 3n

⇒ (3)3 = 3n

Since, the bases are same and equating the powers, we get

⇒ n = 3



14. Find the value of n, when 3432/n = 49

Solution:


[(7)3]2/n = (7)2

⇒ (7)6/n = (7)2

⇒ 6/n = 2

Since, the bases are same and equating the powers, we get n = 6/2 = 3.


 Exponents

Exponents

Laws of Exponents

Rational Exponent

Integral Exponents of a Rational Numbers

Solved Examples on Exponents

Practice Test on Exponents


 Exponents - Worksheets

Worksheet on Exponents











8th Grade Math Practice

From Solved Examples on Exponents to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on 8 Times Table | Printable Multiplication Table | Video

    Mar 18, 25 03:30 PM

    worksheet on multiplication of 8 times table
    Worksheet on 8 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  2. Worksheet on Roman Numerals |Roman Numerals|Symbols for Roman Numerals

    Mar 18, 25 02:47 PM

    Roman Numbers Table
    Practice the worksheet on roman numerals or numbers. This sheet will encourage the students to practice about the symbols for roman numerals and their values. Write the number for the following: (a) V…

    Read More

  3. Conversion of Roman Numeration | Roman Numerals |Hindu Arabic Numerals

    Mar 18, 25 02:12 PM

    We will learn the conversion of Roman numeration. First we will learn how to convert numbers in roman numerals. 1. Convert 579 in roman numerals.

    Read More

  4. Rules of Roman Numeration |Roman Number System|Roman Numeration System

    Mar 18, 25 09:41 AM

    Rules of Roman Numerals
    We will learn about Roman Numeration and its rules. We know that there are seven basic Roman Numerals. They are I, V, X, L, C, D and M. These numerals stand for the number 1, 5, 10, 50, 100, 500

    Read More

  5. Divisible by 2 | Test of Divisibility by 2 |Rules of Divisibility by 2

    Mar 17, 25 04:04 PM

    Divisible by 2
    A number is divisible by 2 if the digit at unit place is either 0 or multiple of 2. So a number is divisible by 2 if digit at its units place is 0, 2, 4, 6 or 8.

    Read More