# Ratio in Simplest Form

Here we will learn how to make the ratio in simplest form.

1. A ratio between two quantities of same kind and in the same units is obtained on dividing one quantity by the other and has no unit. The ratio is independent of the units used in the quantities compared.

2. The ratio must always be expressed in its simplest form or in its lowest terms.

A ratio is said to be is the simplest form or in the lowest term if two quantities of a ratio (i.e., antecedent and consequent) have no common factor (i.e. antecedent and consequent are co-prime) other than 1 (or their HCF is 1.)

For example:

(i) The ratio between 36 kg and 24 kg = (36 kg)/(24 kg)

= 36/24, [both numerator and denominator are divided by 12]

= 3/2

= 3 : 2.

(ii) The ratio between 5 kg and 15 kg = (5 kg)/(15 kg)

= 5/15, [both numerator and denominator are divided by 5]

= 1/3

= 1 : 3.

3. If in a ratio the number or quantities are of the same kind but in different units, then we must convert them number or quantities into same unit. Generally, the bigger unit of the ratio is converted into smaller unit.

For example:

(i) The ratio between 800 g and 1.2 kg = (800 g)/(1200 g)

= 800/1200, [since 1.2 kg = 1.2 × 1000 gm = 1200 gm]

= 8/12, [both numerator and denominator are divided by 4]

= 2/3

= 2 : 3.

(ii) The ratio of 5 cm and 60 mm = (50 mm)/(60 mm), [since 5 cm = 5 × 10 mm = 50 mm]

= 50/60, [both numerator and denominator are divided by 10]

= 5/6

= 5 : 6.

4. If each term of a ratio is multiplied or divided by the same non-zero number (quantity), the ratio remains the same.

For example:

The ratio of 18 and 24= 18 : 24 = 18/24

Now, 18/24 = (18 × 6)/(24 × 6) = 108/144  or, 18 : 24 = 108 : 144.

Again, 18/24 = (18 ÷ 6)/(24 ÷ 6) = 3/4 or, 18 : 24 = 3 : 4.

5. The order of the quantities (terms) in a ratio (P : Q) is important. By reversing the antecedent and the consequent of a ratio, a different ratio is obtained (i.e., Q : P).

For example:

(i) The ratio 5 : 7 is different from the ratio 7 : 5.

(ii) 6 : 11 is different from 11 : 6.

The different types of examples along with the explanation will help us how we usually express the ratio in simplest form.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Addition and Subtraction of Fractions | Solved Examples | Worksheet

Jul 18, 24 03:08 PM

Addition and subtraction of fractions are discussed here with examples. To add or subtract two or more fractions, proceed as under: (i) Convert the mixed fractions (if any.) or natural numbers

2. ### Worksheet on Simplification | Simplify Expressions | BODMAS Questions

Jul 18, 24 01:19 AM

In worksheet on simplification, the questions are based in order to simplify expressions involving more than one bracket by using the steps of removal of brackets. This exercise sheet

3. ### Fractions in Descending Order |Arranging Fractions an Descending Order

Jul 18, 24 01:15 AM

We will discuss here how to arrange the fractions in descending order. Solved examples for arranging in descending order: 1. Arrange the following fractions 5/6, 7/10, 11/20 in descending order. First…

4. ### Fractions in Ascending Order | Arranging Fractions | Worksheet |Answer

Jul 18, 24 01:02 AM

We will discuss here how to arrange the fractions in ascending order. Solved examples for arranging in ascending order: 1. Arrange the following fractions 5/6, 8/9, 2/3 in ascending order. First we fi…