Loading [MathJax]/jax/output/HTML-CSS/jax.js

Ratio in Simplest Form

Here we will learn how to make the ratio in simplest form.

Ratio in Simplest Form:

If the ratio a : b is such that the HCF of numerator a and denominator b is 1, then the ratio a : b is called the ratio in its simplest form.

A ratio should always be expressed in its simplest (lowest) form.

Properties of Ratio in Simplest Form:

1. A ratio between two quantities of same kind and in the same units is obtained on dividing one quantity by the other and has no unit. The ratio is independent of the units used in the quantities compared.

2. The ratio must always be expressed in its simplest form or in its lowest terms.

A ratio is said to be is the simplest form or in the lowest term if two quantities of a ratio (i.e., antecedent and consequent) have no common factor (i.e. antecedent and consequent are co-prime) other than 1 (or their HCF is 1.)

For example:

(i) The ratio between 36 kg and 24 kg

                = 36 kg24 kg

                = 3624, [both numerator and denominator are divided by 12]

                = 32

                = 3 : 2.


(ii) The ratio between 5 kg and 15 kg

                = 5 kg15 kg

               = 515, [both numerator and denominator are divided by 5]

               = 13

               = 1 : 3.

 

3. If in a ratio the number or quantities are of the same kind but in different units, then we must convert them number or quantities into same unit. Generally, the bigger unit of the ratio is converted into smaller unit.

For example:

(i) The ratio between 800 g and 1.2 kg

                  = 800 g1200 g

                  = 8001200, [since 1.2 kg = 1.2 × 1000 gm = 1200 gm]

                  = 812, [both numerator and denominator are divided by 4]

                  = 23

                  = 2 : 3.


(ii) The ratio of 5 cm and 60 mm

                  = 50 mm60 mm, [since 5 cm = 5 × 10 mm = 50 mm]

                  = 5060, [both numerator and denominator are divided by 10]

                  = 56

                  = 5 : 6.

 

4. If each term of a ratio is multiplied or divided by the same non-zero number (quantity), the ratio remains the same.

For example:

The ratio of 18 and 24 = 18 : 24 = 1824

Now, 1824 = 18×624×6 = 108144  or, 18 : 24 = 108 : 144.

Again, 1824 = 18÷624÷6 = 34 or, 18 : 24 = 3 : 4.

 

5. The order of the quantities (terms) in a ratio (P : Q) is important. By reversing the antecedent and the consequent of a ratio, a different ratio is obtained (i.e., Q : P).

For example:

(i) The ratio 5 : 7 is different from the ratio 7 : 5.

(ii) 6 : 11 is different from 11 : 6.

The different types of examples along with the explanation will help us how we usually express the ratio in simplest form.


Ratio in Simplest Form

Solved Examples on Ratio in Simplest Form:

1. Convert the ratio 28 : 42 in its simplest form.

Solution:

HCF of 28 and 42 is 14.

28 : 42 = 2842

           = 28÷1442÷14

           = 23

           = 2 : 3

Hence, 28 : 42 in its simplest form is 2 :3.


2. Express the ratio 480 : 384 in its simplest form.

Solution:

HCF of 480 and 384 is 96.

480 : 384 = 480384

               = 480÷96384÷96

               = 54

               = 5 : 4

Hence, 480 : 384 in its lowest form is 5 : 4.


3. Find the ratio of 36 minutes to 3 hours.

Solution:

3 hours = 3 × 60 minutes = 180 minutes

36 minutes : 3 hours = 36 minutes : 180 minutes

                               = 36 minutes180 minutes

                               = 36180

                               = 36÷36180÷36

                               = 15

                               = 1 : 5 


4. Find the ratio of 4 years to 4 months.

Solution:

4 years = 4 × 12 months = 48 months

4 years : 4 months = 48 months : 4 months

                            = 48 months4 months

                            = 484

                            = 48÷44÷4

                            = 121

                            = 12 : 1


Worksheet on Ratio in Simplest Form:

1. Express the following ratios as fractions and reduce them to the simplest form:

(i) 32 : 144

(ii) 16 : 640

(iii) 1434


Answer:

1. (i) 29

(ii) 14

(iii) 1434

You might like these





6th Grade Page

From Ratio in Simplest Form to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Before and After Video | Math Worksheets on Number | Before and After

    Apr 03, 25 12:44 AM

    before and after number worksheet
    Free math worksheets on numbers before and after help the kids to check how much they are good at numbers. The purpose of this math activity is to help your child to say a number in order and also hel

    Read More

  2. Order of Numbers Video | Before and After Numbers up to 10 | Counting

    Apr 03, 25 12:39 AM

    We will learn the order of numbers in a number line. In numbers and counting up to 10 we will learn to find the before and after numbers up to 10.

    Read More

  3. Counting Before, After and Between Numbers up to 10 Video | Counting

    Apr 03, 25 12:36 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  4. Numbers and Counting up to 10 | Why do we Need to Learn Numbers?|Video

    Apr 03, 25 12:33 AM

    Learning Numbers
    We will learn numbers and counting up to 10 to recognize the numerals 1 through 10. Counting numbers are very important to know so that we can understand that numbers have an order and also be able to

    Read More

  5. Numbers up to 10 Video | Kindergarten Math Lesson Plan | Math Lesson

    Apr 03, 25 12:30 AM

    Free Kindergarten Math
    Numbers up to 10, let’s count the set of pictures and then circle the correct number mentioned. We will learn evaluating the number value. Compare the object by counting. The child identifies numbers

    Read More