Loading [MathJax]/jax/output/HTML-CSS/jax.js

Ratio in Simplest Form

Here we will learn how to make the ratio in simplest form.

Ratio in Simplest Form:

If the ratio a : b is such that the HCF of numerator a and denominator b is 1, then the ratio a : b is called the ratio in its simplest form.

A ratio should always be expressed in its simplest (lowest) form.

Properties of Ratio in Simplest Form:

1. A ratio between two quantities of same kind and in the same units is obtained on dividing one quantity by the other and has no unit. The ratio is independent of the units used in the quantities compared.

2. The ratio must always be expressed in its simplest form or in its lowest terms.

A ratio is said to be is the simplest form or in the lowest term if two quantities of a ratio (i.e., antecedent and consequent) have no common factor (i.e. antecedent and consequent are co-prime) other than 1 (or their HCF is 1.)

For example:

(i) The ratio between 36 kg and 24 kg

                = 36 kg24 kg

                = 3624, [both numerator and denominator are divided by 12]

                = 32

                = 3 : 2.


(ii) The ratio between 5 kg and 15 kg

                = 5 kg15 kg

               = 515, [both numerator and denominator are divided by 5]

               = 13

               = 1 : 3.

 

3. If in a ratio the number or quantities are of the same kind but in different units, then we must convert them number or quantities into same unit. Generally, the bigger unit of the ratio is converted into smaller unit.

For example:

(i) The ratio between 800 g and 1.2 kg

                  = 800 g1200 g

                  = 8001200, [since 1.2 kg = 1.2 × 1000 gm = 1200 gm]

                  = 812, [both numerator and denominator are divided by 4]

                  = 23

                  = 2 : 3.


(ii) The ratio of 5 cm and 60 mm

                  = 50 mm60 mm, [since 5 cm = 5 × 10 mm = 50 mm]

                  = 5060, [both numerator and denominator are divided by 10]

                  = 56

                  = 5 : 6.

 

4. If each term of a ratio is multiplied or divided by the same non-zero number (quantity), the ratio remains the same.

For example:

The ratio of 18 and 24 = 18 : 24 = 1824

Now, 1824 = 18×624×6 = 108144  or, 18 : 24 = 108 : 144.

Again, 1824 = 18÷624÷6 = 34 or, 18 : 24 = 3 : 4.

 

5. The order of the quantities (terms) in a ratio (P : Q) is important. By reversing the antecedent and the consequent of a ratio, a different ratio is obtained (i.e., Q : P).

For example:

(i) The ratio 5 : 7 is different from the ratio 7 : 5.

(ii) 6 : 11 is different from 11 : 6.

The different types of examples along with the explanation will help us how we usually express the ratio in simplest form.


Ratio in Simplest Form

Solved Examples on Ratio in Simplest Form:

1. Convert the ratio 28 : 42 in its simplest form.

Solution:

HCF of 28 and 42 is 14.

28 : 42 = 2842

           = 28÷1442÷14

           = 23

           = 2 : 3

Hence, 28 : 42 in its simplest form is 2 :3.


2. Express the ratio 480 : 384 in its simplest form.

Solution:

HCF of 480 and 384 is 96.

480 : 384 = 480384

               = 480÷96384÷96

               = 54

               = 5 : 4

Hence, 480 : 384 in its lowest form is 5 : 4.


3. Find the ratio of 36 minutes to 3 hours.

Solution:

3 hours = 3 × 60 minutes = 180 minutes

36 minutes : 3 hours = 36 minutes : 180 minutes

                               = 36 minutes180 minutes

                               = 36180

                               = 36÷36180÷36

                               = 15

                               = 1 : 5 


4. Find the ratio of 4 years to 4 months.

Solution:

4 years = 4 × 12 months = 48 months

4 years : 4 months = 48 months : 4 months

                            = 48 months4 months

                            = 484

                            = 48÷44÷4

                            = 121

                            = 12 : 1


Worksheet on Ratio in Simplest Form:

1. Express the following ratios as fractions and reduce them to the simplest form:

(i) 32 : 144

(ii) 16 : 640

(iii) 1434


Answer:

1. (i) 29

(ii) 14

(iii) 1434

You might like these





6th Grade Page

From Ratio in Simplest Form to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Multiplication by Ten, Hundred and Thousand |Multiply by 10, 100 &1000

    May 01, 25 11:57 PM

    Multiply by 10
    To multiply a number by 10, 100, or 1000 we need to count the number of zeroes in the multiplier and write the same number of zeroes to the right of the multiplicand. Rules for the multiplication by 1…

    Read More

  2. Adding and Subtracting Large Decimals | Examples | Worksheet | Answers

    May 01, 25 03:01 PM

    Here we will learn adding and subtracting large decimals. We have already learnt how to add and subtract smaller decimals. Now we will consider some examples involving larger decimals.

    Read More

  3. Converting Fractions to Decimals | Solved Examples | Free Worksheet

    Apr 28, 25 01:43 AM

    Converting Fractions to Decimals
    In converting fractions to decimals, we know that decimals are fractions with denominators 10, 100, 1000 etc. In order to convert other fractions into decimals, we follow the following steps:

    Read More

  4. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Apr 27, 25 10:13 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  5. Converting Decimals to Fractions | Solved Examples | Free Worksheet

    Apr 26, 25 04:56 PM

    Converting Decimals to Fractions
    In converting decimals to fractions, we know that a decimal can always be converted into a fraction by using the following steps: Step I: Obtain the decimal. Step II: Remove the decimal points from th…

    Read More