Concept of Ratio

In concept of ratio we will learn how a ratio is compared with two or more quantities of the same kind. It can be represented as a fraction.

A ratio is a comparison of two or more quantities of the same kind. It can be represented as a fraction.

Most of time, we compare things, number, etc. (say, m and n) by saying:

(i) m greater than n

(ii) m less than n

When we want to see how much more (m greater than n) or less (m less than n) one quantities is than the other, we find the difference of their magnitudes and such a comparison is known as the comparison by division.

(iii) m is double of n

(iv) m is one-fourth of n

If we want to see how many times more (m is double of n) or less (m is one-fourth of n) one quantities is than the other, we find the ratio or division of their magnitudes and such a comparison is known as the comparison by difference.


(v) m/n = 2/3

(vi) n/m = 5/7, etc.

The method of comparing two quantities (numbers, things, etc.) by dividing one quantity by the other is called a ratio.

Thus:  (v) m/n = 2/3 represents the ratio between m and n.

         (vi) n/m = 5/7 represents the ratio between n and m.

When we compare two quantities of the same kind of division, we say that we form a ratio of the two quantities.


Therefore, it is evident from the basic concept of ratio is that a ratio is a fraction that shows how many times a quantity is of another quantity of the same kind.


Definition of Ratio:

The relation between two quantities (both of them are same kind and in the same unit) obtain on dividing one quantity by the other, is called the ratio.

The symbol used for this purpose ":" and is put between the two quantities compared.

Therefore, the ratio between two quantities m and n (n ≠ 0), both of them same kind and in the same unit, is m/n and often written as m : n (read as m to n or m is to n)

In the ratio m : n, the quantities (numbers) m and n are called the terms of the ratio. The first term (i.e. m) is called antecedent and the second term (i.e. is n) is called consequent.

Note: From the concept of ratio and its definition we come to know that when numerator and denominator of a fraction are divided or multiplied by the same non-zero numbers, the value of the fraction does not change. In this reason, the value of a ratio does not alter, if its antecedent and consequent are divided or multiplied by the same non-zero numbers.

For example, the ratio of 15 and 25 = 15 : 25 = 15/25

Now, multiply numerator (antecedent) and denominator (consequent) by 5

15/25 = (15 × 5)/(25 × 5) = 75/125

Therefore, 15/25 = 75/125

Again, divide numerator (antecedent) and denominator (consequent) by 5

15/25 = (15 ÷ 5)/(25 ÷ 5) = 3/5

Therefore, 15/25 = 3/5


Examples on ratio:

(i) The ratio of $ 2 to $ 3 = $ 2/$ 3 = 2/3 =2 : 3.

(ii) The ratio of 7 metres to 4 metres = 7 metres/4 metres = 7/4 = 7 : 4.

(iii) The ratio of 9 kg to 17 kg = 9 kg/17 kg= 9/17 = 9 : 17.

(iv) The ratio of 13 litres to 5 litres = 13 litres/5 litres = 13/5 = 13 : 5.











6th Grade Page

From Concept of Ratio to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 18, 24 02:59 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More

  2. Numbers | Notation | Numeration | Numeral | Estimation | Examples

    May 12, 24 06:28 PM

    Numbers are used for calculating and counting. These counting numbers 1, 2, 3, 4, 5, .......... are called natural numbers. In order to describe the number of elements in a collection with no objects

    Read More

  3. Face Value and Place Value|Difference Between Place Value & Face Value

    May 12, 24 06:23 PM

    Face Value and Place Value
    What is the difference between face value and place value of digits? Before we proceed to face value and place value let us recall the expanded form of a number. The face value of a digit is the digit…

    Read More

  4. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    May 12, 24 06:09 PM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  5. Worksheet on Bar Graphs | Bar Graphs or Column Graphs | Graphing Bar

    May 12, 24 04:59 PM

    Bar Graph Worksheet
    In math worksheet on bar graphs students can practice the questions on how to make and read bar graphs or column graphs. Test your knowledge by practicing this graphing worksheet where we will

    Read More