Continued Proportion

Definition of Continued Proportion:

Three quantities are said to be in continued proportion; if the ratio between the first and the second is equal to the ratio between the second and the third.

Suppose, if we have three qualities such that the ratio of first to second is equal to the ratio of second to third, we say that the three qualities are in continued proportion. The middle term is called the mean proportional between the first the third terms.

i.e. a, b and c are in continued proportion, if a : b = b : c

The second quantity is called the mean proportional between the first and the third

i.e. in a : b = b : c; b is the mean proportional between a and c.

 The third quantity is called the third proportional to the first and the second

i.e. in a : b = b : c; c is the third proportional to a and b.

For example, let us consider the numbers 6, 12, 24.

Here the ratio of first quantity to the second = 6 : 12 = 1 : 2

And ratio of second quantity to the third = 12 : 24 = 1 : 2

We see that 6 : 12 = 12 : 24

Thus, 6, 12, 24 are in continued proportion.

The second quantity 12 is the mean proportional and third quantity 24 is the third proportional.

Solved example on continued proportion:

1. Find the mean proportion between 4 and 9.


Let the mean proportion be x

Therefore, 4 : x = x : 9

⇒ x × x = 4 × 9

⇒ x2 = 36

⇒ x2 = 62

⇒ x = 6

2. Find, m, if 7, 14, m are in continued proportion.


x, y and z are in continued proportion xz = y2

Let 7, 14, and m be x, y and z respectively.

Therefore, 7m = 142

or, 7m = 196         

or, m = 196/7

Therefore, m = 28.

Hence, m = 28.

3. Find the third proportional to 12 and 30.


Let x be the third proportional

Therefore, 12 : 30 = x : 30

⇒ 12 × x = 30 × 30

⇒ 12x = 900

⇒ x = 900/12

⇒ x = 75

6th Grade Page

From Continued Proportion to HOME PAGE

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Share this page: What’s this?

Recent Articles

  1. Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

    Mar 02, 24 04:55 PM

    The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

    Read More

  2. Subtraction of Fractions having the Same Denominator | Like Fractions

    Mar 02, 24 04:36 PM

    Subtraction of Fractions having the Same Denominator
    To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numera…

    Read More

  3. Addition of Like Fractions | Examples | Worksheet | Answer | Fractions

    Mar 02, 24 03:32 PM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  4. Comparison of Unlike Fractions | Compare Unlike Fractions | Examples

    Mar 01, 24 01:42 PM

    Comparison of Unlike Fractions
    In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a nu…

    Read More

  5. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 29, 24 05:12 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More