Subscribe to our YouTube channel for the latest videos, updates, and tips.


Continued Proportion

Definition of Continued Proportion:

Three quantities are said to be in continued proportion; if the ratio between the first and the second is equal to the ratio between the second and the third.

Suppose, if we have three qualities such that the ratio of first to second is equal to the ratio of second to third, we say that the three qualities are in continued proportion. The middle term is called the mean proportional between the first the third terms.

i.e. a, b and c are in continued proportion, if a : b = b : c

The second quantity is called the mean proportional between the first and the third

i.e. in a : b = b : c; b is the mean proportional between a and c.

 The third quantity is called the third proportional to the first and the second

i.e. in a : b = b : c; c is the third proportional to a and b.

For example, let us consider the numbers 6, 12, 24.

Here the ratio of first quantity to the second = 6 : 12 = 1 : 2

And ratio of second quantity to the third = 12 : 24 = 1 : 2

We see that 6 : 12 = 12 : 24

Thus, 6, 12, 24 are in continued proportion.

The second quantity 12 is the mean proportional and third quantity 24 is the third proportional.


Solved Example on Continued Proportion:

1. Find the mean proportion between 4 and 9.

Solution:

Let the mean proportion be x

Therefore, 4 : x = x : 9

⇒ x × x = 4 × 9

⇒ x2 = 36

⇒ x2 = 62

⇒ x = 6


2. Find, m, if 7, 14, m are in continued proportion.

Solution:

x, y and z are in continued proportion xz = y2

Let 7, 14, and m be x, y and z respectively.

Therefore, 7m = 142

or, 7m = 196         

or, m = \(\frac{196}{7}\)

Therefore, m = 28.

Hence, m = 28.


3. Find the third proportional to 12 and 30.

Solution:

Let x be the third proportional

Therefore, 12 : 30 = x : 30

⇒ 12 × x = 30 × 30

⇒ 12x = 900

⇒ x = \(\frac{900}{12}\)

⇒ x = 75


4. What is continued proportion in maths? Explain with an example.

Answer:

Three numbers a, b, c are said to be in continued proportion, if a, b, b, c are in proportion.

Therefore, a, b, c are in continued proportion.

⇒ a, b, b, c are in proportion.

⇒ a : b :: b : c are in proportion.

Product of means = Product of extremes

⇒ b × b = a × c

⇒ b² = ac

The middle term b is called the mean proportional between a and c.


Example:

If 4, 12, x are in continued proportion, find the value of x.

Solution:

4, 12, x are in continued proportion

⇒ 4, 12, 12, x are in proportion

Product of extremes = Product of means

⇒ 4 × x = 12 × 12

⇒ 4x = 144

⇒ x = \(\frac{144}{4}\)

⇒ x = 36

Hence, the value of x = 36.

You might like these





6th Grade Page

From Continued Proportion to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Conversion of Improper Fractions into Mixed Fractions |Solved Examples

    May 12, 25 04:52 AM

    Conversion of Improper Fractions into Mixed Fractions
    In conversion of improper fractions into mixed fractions, we follow the following steps: Step I: Obtain the improper fraction. Step II: Divide the numerator by the denominator and obtain the quotient…

    Read More

  2. Multiplication Table of 6 | Read and Write the Table of 6 | Six Table

    May 12, 25 02:23 AM

    Multiplication Table of Six
    Repeated addition by 6’s means the multiplication table of 6. (i) When 6 bunches each having six bananas each. By repeated addition we can show 6 + 6 + 6 + 6 + 6 + 6 = 36 Then, six 6 times or 6 sixes

    Read More

  3. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 11, 25 01:22 PM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More

  4. Worksheet on Dividing Decimals | Huge Number of Decimal Division Prob

    May 11, 25 11:52 AM

    Worksheet on Dividing Decimals
    Practice the math questions given in the worksheet on dividing decimals. Divide the decimals to find the quotient, same like dividing whole numbers. This worksheet would be really good for the student…

    Read More

  5. Worksheet on Multiplying Decimals | Product of the Two Decimal Numbers

    May 11, 25 11:18 AM

    Practice the math questions given in the worksheet on multiplying decimals. Multiply the decimals to find the product of the two decimal numbers, same like multiplying whole numbers.

    Read More