Multiplication of Algebraic Expression


In multiplication of algebraic expression before taking up the product of algebraic expressions, let us look at two simple rules.

(i) The product of two factors with like signs is positive, and the product of two factors with unlike signs is negative.

(ii) if x is a variable and m, n are positive integers, then

(xᵐ × xⁿ) = x\(^{m + n}\)


Thus, (x³ × x⁵) = x⁸, (x⁶ + x⁴) = x\(^{6 + 4}\) = x\(^{10}\), etc. 


I. Multiplication of Two Monomials

Rule:

Product of two monomials = (product of their numerical coefficients) × (product of their variable parts)

Find the product of: (i) 6xy and -3x²y³

Solution:

(6xy) × (-3x²y³)

= {6 × (-3)} × {xy × x²y³}

= -18x\(^{1 + 2}\) y\(^{1 + 3}\)

= -18x³y⁴.

(ii) 7ab², -4a²b and -5abc

Solution:

(7ab²) × (-4a²b) × (-5abc)

= {7 × (-4) × (-5)} × {ab² × a²b × abc}

= 140 a\(^{1 + 2 + 1}\) b\(^{2 + 1 + 1}\) c

= 140a⁴b⁴c.

II. Multiplication of a Polynomial by a Monomial

Rule:

Multiply each term of the polynomial by the monomial, using the distributive law a × (b + c) = a × b + a × c.

Find each of the following products:

(i) 5a²b² × (3a² - 4ab + 6b²)

Solution:

5a²b² × (3a² - 4ab + 6b²)

= (5a²b²) × (3a²) + (5a²b²) × (-4ab) + (5a²b²) × (6b²)

= 15a⁴b² - 20a³b³ + 30a²b⁴.

(ii) (-3x²y) × (4x²y - 3xy² + 4x - 5y)

Solution:

(-3x²y) × (4x²y - 3xy² + 4x - 5y)

= (-3x²y) × (4x²y) + (-3x²y) × (-3xy²) + (-3x²y) × (4x) + (-3x²y) × (-5y)

= -12x⁴y² + 9x³y³ - 12x³y + 15x²y².

III. Multiplication of Two Binomials

Suppose (a + b) and (c + d) are two binomials. By using the distributive law of multiplication over addition twice, we may find their product as given below.

(a + b) × (c + d)

= a × (c + d) + b × (c + d)

= (a × c + a × d) + (b × c + b × d)

= ac + ad + bc + bd

Note: This method is known as the horizontal method. 


(i) Multiply (3x + 5y) and (5x - 7y).

Solution:

(3x + 5y) × (5x - 7y)

= 3x × (5x - 7y) + 5y × (5x - 7y)

= (3x × 5x - 3x × 7y) + (5y × 5x - 5y × 7y)

= (15x² - 21xy) + (25xy - 35y²)

= 15x² - 21xy + 25xy - 35y²

= 15x² + 4xy - 35y².

Column wise multiplication

The multiplication can be performed column wise as shown below.

    3x + 5y

× (5x - 7y)
_____________
  15x² + 25xy                  ⇐ multiplication by 5x.

           - 21xy - 35y²       ⇐ multiplication by -7y.
__________________
15x²  +  4xy  - 35y²       ⇐ multiplication by (5x - 7y).
__________________

(ii) Multiply (3x² + y²) by (2x² + 3y²)

Solution:

Horizontal method,

= 3x² (2x² + 3y²) + y² (2x² + 3y²)

= (6x⁴ + 9x²y²) + (2x²y² + 3y⁴)

= 6x⁴ + 9x²y² + 2x²y² + 3y⁴

= 6x⁴ + 11x²y² + 3y⁴

Column methods,

     3x² +  y²

× (2x² +  3y³)
_____________
    6x⁴ +  2x²y²                  ⇐ multiplication by 2x² .

          +  9x²y² + 3y⁴        ⇐ multiplication by 3y³.
___________________
  6x⁴ + 11x²y² + 3y⁴        ⇐ multiplication by (2x² + 3y³).
___________________

IV. Multiplication by Polynomial

We may extend the above result for two polynomials, as shown below.

(i) Multiply (5x² – 6x + 9) by (2x -3)

    5x² – 6x + 9

×         (2x - 3)
____________________
   10x³ - 12x² + 18x               ⇐ multiplication by 2x.

          - 15x² + 18x - 27         ⇐ multiplication by -3.
______________________
 10x³ – 27x² + 36x - 27         ⇐ multiplication by (2x - 3).
______________________

Therefore, (5x² – 6x + 9) by (2x - 3) is 10x³ – 27x² + 36x – 27

(ii) Multiply (2x² – 5x + 4) by (x² + 7x – 8)

Solution:

By column method

    2x² –  5x + 4

×  (x² +  7x – 8)
___________________________
   2x⁴ –   5x³ +   4x²                       ⇐ multiplication by x².

         + 14x³ - 35x² + 28x              ⇐ multiplication by 7x.

                   - 16x² + 40x - 32         ⇐ multiplication by -8.
___________________________
 2x⁴ –   9x³ - 47x² + 68x - 32         ⇐ multiplication by (x² + 7x - 8).
___________________________

Therefore, (2x² – 5x + 4) by (x² + 7x – 8) is 2x⁴ – 9x³ - 47x² + 68x – 32.

(iii) Multiply (2x³ – 5x² – x + 7) by (3 - 2x + 4x²)

Solution:

Arranging the terms of the given polynomials in descending power of x and then multiplying,

    2x³ – 5x² – x + 7

×      (3 - 2x + 4x²)
_________________________________
   8x⁵ - 20x⁴ –   4x³ + 28x²                      ⇐ multiplication by 3.

         -  4x⁴ + 10x³ +   2x² – 14x             ⇐ multiplication by -2x.

                  +   6x³ – 15x² -   3x + 21      ⇐ multiplication by 4x².
_________________________________
 8x⁵ – 24x⁴ + 12x³ + 15x² – 17x + 21    ⇐ multiplication by (3 - 2x + 4x²).
_________________________________


 Algebraic Expression

Algebraic Expression

Addition of Algebraic Expressions

Subtraction of Algebraic Expressions

Multiplication of Algebraic Expression

Division of Algebraic Expressions









8th Grade Math Practice 

From Multiplication of Algebraic Expression to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Apr 20, 25 11:46 AM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  2. Word Problems on Division | Examples on Word Problems on Division

    Apr 20, 25 11:17 AM

    Word Problem on Division
    Word problems on division for fourth grade students are solved here step by step. Consider the following examples on word problems involving division: 1. $5,876 are distributed equally among 26 men. H…

    Read More

  3. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Apr 20, 25 10:27 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  4. Subtraction without Regrouping |4-Digit, 5-Digit & 6-Digit Subtraction

    Apr 20, 25 10:25 AM

    Subtraction without Regrouping
    We will learn subtracting 4-digit, 5-digit and 6-digit numbers without regrouping. We first arrange the numbers one below the other in place value columns and then subtract the digits under each colum…

    Read More

  5. Worksheets on Missing Numbers from 1 to 20 | Counting Missing Numbers

    Apr 20, 25 10:17 AM

    Printable worksheets on missing numbers
    Printable worksheets on missing numbers from 1 to 20 help the kids to practice counting of the numbers.

    Read More