# Addition of Algebraic Expressions

In addition of algebraic expressions while adding algebraic expressions we collect the like terms and add them. The sum of several like terms is the like term whose coefficient is the sum of the coefficients of these like terms.

Two ways to solve addition of algebraic expressions.

Horizontal Method: In this method, all expressions are written in a horizontal line and then the terms are arranged to collect all the groups of like terms and then added.

Column Method: In this method each expression is written in a separate row such that there like terms are arranged one below the other in a column. Then the addition of terms is done column wise.

Following illustrations will illustrate these methods.

Examples on addition of algebraic expressions:

1. Add: 6a + 8b - 7c, 2b + c - 4a and a - 3b - 2c

Solution:

Horizontal Method:

(6a + 8b - 7c) + (2b + c - 4a) + (a - 3b - 2c)

= 6a + 8b - 7c + 2b + c - 4a + a - 3b - 2c

Arrange the like terms together, then add.

Thus, the required addition

= 6a - 4a + a + 8b + 2b - 3b - 7c + c - 2c

= 3a + 7b - 8c

Column Method:

Solution:

Writing the terms of the given expressions in the same order in form of rows with like terms below each other and adding column wise;

6a + 8b - 7c

- 4a + 2b +  c

a - 3b - 2c

3a + 7b - 8c

= 3a + 7b - 8c

2. Add: 5x² + 7y - 8, 4y + 7 - 2x² and 6 – 5y + 4x².

Solution:

Writing the given expressions in descending powers of x in the form of rows with like terms below each other and adding column wise;

5x² + 7y - 8

- 2x² + 4y + 7

4x² – 5y + 6
___________
7x² + 6y + 5
___________

= 7x² + 6y + 5

3. Add: 8x² - 5xy + 3y², 2xy - 6y² + 3x² and y² + xy - 6x².

Solution:

Arranging the given expressions in descending powers of x with like terms under each other and adding column wise;

8x² - 5xy + 3y²

3x² - 2xy - 6y²

-6x² +  xy +  y²
_____________
5x² - 2xy - 2y²
_____________

= 5x² - 2xy - 2y²

4. Add: 11a² + 8b² - 9c², 5b² + 3c² - 4a² and 3a² - 4b² - 4c².

Solution:

Writing the terms of the given expressions in the same order in form of rows with like terms below each other and adding column wise;

11a² + 8b² - 9c²

- 4a² + 5b² + 3c²

3a² - 4b² - 4c²
________________
10a² + 9b² - 10c²
________________

= 10a² + 9b² - 10c²

5. Add the 3x + 2y and x + y.

Solution:

Horizontal Method:

(3x + 2y) + (x + y)

Arrange the like terms together, then add.

Thus, the required addition

= 3x + 2y + x + y

= 3x + x + 2y +y

= 4x + 3y

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

3x + 2y

+ x + y
_________
4 x + 3y

6. Add: x + y + 3 and 3x + 2y + 5

Solution:

Horizontal Method:

(x + y + 3) + (3x + 2y + 5)

= x + y + 3 + 3x + 2y + 5

Arrange the like terms together, then add.

Thus, the required addition

= x + 3x + y + 2y + 3 + 5

= 4x + 3y + 8

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

x + y + 3

+ 3x + 2y + 5
_________________
4x + 3y + 8

7. Add: 2x + 3y + z and 2x - y - z

Solution:

Horizontal Method:

(2x + 3y + z) + (2x - y – z)

=2x + 3y + z + 2x - y – z

Arrange the like terms together, then add.

Thus, the required addition

= 2x + 2x + 3y - y + z - z

=4x + 2y

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

2x + 3y + z

+ 2x - y - z
_____________
4x + 2y

8. Add: 5x³ – 2y³ and 7x³ – 3y³

Solution:

Horizontal Method:

(5x³ – 2y³) + (7x³ – 3y³)

=5x³ - 2y³ + 7x³ – 3y³

Arrange the like terms together, then add.

Thus, the required addition

= 5x³ + 7x³ - 2y³ - 3y³

=12x³ – 5y³

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

5x³ – 2y³

+ 7x³ - 3y³
_____________
12x³ – 5y³

9. Add: a² + b² + c² – 3abc and a² – b² + c² + abc

Solution:

Horizontal Method:

(a² + b² + c² - 3abc) + (a² – b² + c² + abc)

= a² + b² + c² - 3abc + a² – b² + c² + abc

Arrange the like terms together, then add.

Thus, the required addition

= (a² + a²) + (b² – b²) + (c² + c²) - 3abc + abc

= 2a² + 2c² -2abc

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

a² + b² + c² – 3abc

+ a² – b² + c² + abc
__________________
2a² + 0 + 2c² – 2abc

10. Add: xy² + 4x²y – 7x²y - 3xy² + 3 and x²y + xy²

We have;

xy² + 4x²y -7x²y - 3xy² + 3

= - 2xy² - 3x²y + 3

Solution:

Horizontal Method:

(xy² + 4x²y – 7x²y - 3xy² + 3) +(x²y + xy²)

= (-2xy² - 3x²y + 3) + x²y + xy²

= -2xy² - 3x²y + 3 + x²y + xy²

Arrange the like terms together, then add.

Thus, the required addition

= -2xy² + xy² - 3x²y + xy² + 3

= - xy² - 2x²y + 3

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

- 2xy² - 3x²y +3

+ xy² + x²y
________________
- xy² - 2x²y + 3

11. Add: 5x² + 7y - 6z², 4y + 3x², 9x² + 2z² - 9y and 2y - 2x².

Solution:

Horizontal Method:

(5x² + 7y - 6z²) + (4y + 3x²) + (9x² + 2z² - 9y) + (2y - 2x²).

= 5x² + 7y - 6z² + 4y + 3x² + 9x² + 2z² - 9y + 2y - 2x²

Arrange the like terms together, then add.

Thus, the required addition

= 5x² + 3x² + 9x² - 2x² + 7y + 4y - 9y + 2y - 6z² + 2z²

= 15x² + 4y - 4z²

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

5x² + 7y - 6z²

+ 3x² + 4y

+ 9x² - 9y + 2z²

- 2x² + 2y
________________
15x² + 4y - 4z².

Algebraic Expression

Algebraic Expression

Division of Algebraic Expressions

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

## Recent Articles

1. ### 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

Sep 14, 24 04:31 PM

The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

2. ### Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

Sep 14, 24 03:39 PM

Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

3. ### Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

Sep 14, 24 02:12 PM

Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

4. ### Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

Sep 13, 24 02:48 AM

What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

5. ### Comparison of Two-digit Numbers | Arrange 2-digit Numbers | Examples

Sep 12, 24 03:07 PM

What are the rules for the comparison of two-digit numbers? We know that a two-digit number is always greater than a single digit number. But, when both the numbers are two-digit numbers