Addition of Algebraic Expressions



In addition of algebraic expressions while adding algebraic expressions we collect the like terms and add them. The sum of several like terms is the like term whose coefficient is the sum of the coefficients of these like terms.


Two ways to solve addition of algebraic expressions.

Horizontal Method: In this method, all expressions are written in a horizontal line and then the terms are arranged to collect all the groups of like terms and then added.

Column Method: In this method each expression is written in a separate row such that there like terms are arranged one below the other in a column. Then the addition of terms is done column wise. 

Following illustrations will illustrate these methods. 

Examples on addition of algebraic expressions:

1. Add: 6a + 8b - 7c, 2b + c - 4a and a - 3b - 2c

Solution: 

Horizontal Method:

(6a + 8b - 7c) + (2b + c - 4a) + (a - 3b - 2c) 

= 6a + 8b - 7c + 2b + c - 4a + a - 3b - 2c

Arrange the like terms together, then add. 

Thus, the required addition

= 6a - 4a + a + 8b + 2b - 3b - 7c + c - 2c

= 3a + 7b - 8c


Column Method:

Solution:

Writing the terms of the given expressions in the same order in form of rows with like terms below each other and adding column wise;

    6a + 8b - 7c

 - 4a + 2b +  c

     a - 3b - 2c

   3a + 7b - 8c

  = 3a + 7b - 8c




2. Add: 5x² + 7y - 8, 4y + 7 - 2x² and 6 – 5y + 4x².

Solution:


Writing the given expressions in descending powers of x in the form of rows with like terms below each other and adding column wise;

    5x² + 7y - 8

 - 2x² + 4y + 7

   4x² – 5y + 6
   ___________
   7x² + 6y + 5
   ___________

= 7x² + 6y + 5



3. Add: 8x² - 5xy + 3y², 2xy - 6y² + 3x² and y² + xy - 6x².

Solution:


Arranging the given expressions in descending powers of x with like terms under each other and adding column wise;

   8x² - 5xy + 3y²

   3x² - 2xy - 6y²

 -6x² +  xy +  y²
  _____________
  5x² - 2xy - 2y²
  _____________

= 5x² - 2xy - 2y²




4. Add: 11a² + 8b² - 9c², 5b² + 3c² - 4a² and 3a² - 4b² - 4c².

Solution:


Writing the terms of the given expressions in the same order in form of rows with like terms below each other and adding column wise;

  11a² + 8b² - 9c²

 - 4a² + 5b² + 3c²

   3a² - 4b² - 4c²
 ________________
 10a² + 9b² - 10c²
 ________________

= 10a² + 9b² - 10c²

5. Add the 3x + 2y and x + y.

Solution:

Horizontal Method:

(3x + 2y) + (x + y)

Arrange the like terms together, then add.

Thus, the required addition

= 3x + 2y + x + y

= 3x + x + 2y +y

= 4x + 3y

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

3x + 2y

+ x + y
_________
4 x + 3y



6. Add: x + y + 3 and 3x + 2y + 5

Solution:

Horizontal Method:

(x + y + 3) + (3x + 2y + 5)

= x + y + 3 + 3x + 2y + 5

Arrange the like terms together, then add.

Thus, the required addition

= x + 3x + y + 2y + 3 + 5

= 4x + 3y + 8

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

x + y + 3

+ 3x + 2y + 5
_________________
4x + 3y + 8



7. Add: 2x + 3y + z and 2x - y - z

Solution:

Horizontal Method:

(2x + 3y + z) + (2x - y – z)

=2x + 3y + z + 2x - y – z

Arrange the like terms together, then add.

Thus, the required addition

= 2x + 2x + 3y - y + z - z

=4x + 2y

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

2x + 3y + z

+ 2x - y - z
_____________
4x + 2y




8. Add: 5x³ – 2y³ and 7x³ – 3y³

Solution:

Horizontal Method:

(5x³ – 2y³) + (7x³ – 3y³)

=5x³ - 2y³ + 7x³ – 3y³

Arrange the like terms together, then add.

Thus, the required addition

= 5x³ + 7x³ - 2y³ - 3y³

=12x³ – 5y³

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

5x³ – 2y³

+ 7x³ - 3y³
_____________
12x³ – 5y³



9. Add: a² + b² + c² – 3abc and a² – b² + c² + abc

Solution:

Horizontal Method:

(a² + b² + c² - 3abc) + (a² – b² + c² + abc)

= a² + b² + c² - 3abc + a² – b² + c² + abc

Arrange the like terms together, then add.

Thus, the required addition

= (a² + a²) + (b² – b²) + (c² + c²) - 3abc + abc

= 2a² + 2c² -2abc

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

a² + b² + c² – 3abc

+ a² – b² + c² + abc
__________________
2a² + 0 + 2c² – 2abc



10. Add: xy² + 4x²y – 7x²y - 3xy² + 3 and x²y + xy²

We have;

xy² + 4x²y -7x²y - 3xy² + 3

= - 2xy² - 3x²y + 3

Solution:

Horizontal Method:

(xy² + 4x²y – 7x²y - 3xy² + 3) +(x²y + xy²)

= (-2xy² - 3x²y + 3) + x²y + xy²

= -2xy² - 3x²y + 3 + x²y + xy²

Arrange the like terms together, then add.

Thus, the required addition

= -2xy² + xy² - 3x²y + xy² + 3

= - xy² - 2x²y + 3

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

- 2xy² - 3x²y +3

+ xy² + x²y
________________
- xy² - 2x²y + 3



11. Add: 5x² + 7y - 6z², 4y + 3x², 9x² + 2z² - 9y and 2y - 2x².

Solution:

Horizontal Method:

(5x² + 7y - 6z²) + (4y + 3x²) + (9x² + 2z² - 9y) + (2y - 2x²).

= 5x² + 7y - 6z² + 4y + 3x² + 9x² + 2z² - 9y + 2y - 2x²

Arrange the like terms together, then add.

Thus, the required addition

= 5x² + 3x² + 9x² - 2x² + 7y + 4y - 9y + 2y - 6z² + 2z²

= 15x² + 4y - 4z²

Column Method:

Solution:

Arrange expressions in lines so that the like terms with their signs are one below the other i.e. like terms are in same vertical column and then add the different groups of like terms.

5x² + 7y - 6z²

+ 3x² + 4y

+ 9x² - 9y + 2z²

- 2x² + 2y
________________
15x² + 4y - 4z².


 Algebraic Expression

Algebraic Expression

Addition of Algebraic Expressions

Subtraction of Algebraic Expressions

Multiplication of Algebraic Expression

Division of Algebraic Expressions










8th Grade Math Practice 

From Addition of Algebraic Expressions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More