Examples on Calculating Profit or Loss


Solved examples on calculating profit or loss using the basic facts and important formula on gain or loss.

Let’s observe the fully solved examples on calculating profit or loss with detailed description to solve the answers step-by-step.

1. Henry sold a bicycle at 8% gain. Had it been sold for $ 75 more, the gain would have been 14%. Find the cost price of the bicycle. 

Solution: 

Let the cost price of the bicycle be $ x. 

SP of the bicycle at 8% gain = $ [{(100 + gain %) /100} × CP] 

                                             = $ [{(100 + 8)/100} × x] 

                                             = $ {(108/100) × x} 

                                             = $ (27x/25) 


SP of the bicycle at 14% gain = $ [{(100 + 14)/100} × x] 

                                                = $ {(114/100) × x} 

                                                = $ (57 x/50) 

Therefore, (57 x /50) - (27 x/25) = 75 

⇔ (57 x – 54 x)/50 = 75

⇔ 3 x = (50 × 75) 

⇔ x = (50 × 25) 

⇔ x = 1250

Hence the CP of the bicycle is $ 1250. 


Examples on Calculating Profit or Loss

2. Mike sold a watch at 5% loss. Had he sold it for $ 104 more, he would have gained 8%. Find the selling price of the watch.

Solution:

Let the selling price of the watch be $ x.

Loss% = 5%.

Therefore, CP of the watch = {100/(100 - loss %) × SP}

                                           = $ {100/(100 - 5) × x}

                                           = $ {(100/95) × x}

                                           = $ (20x /19)

Now, CP = $ (20x /19) and gain % = 8%.

Then, SP = [{(100 + gain %)/100} × CP]

               = $ [{(100 + 8)/100} ×(20 x /19)]

               = $ {(108/100)×(20x /19)}

              = $ (108x /95)

Therefore, (108x /95) - x = 104

⇔ (108x - 95x) = (104 × 95)

⇔ 13x = (104 × 95)

⇔ x = (104 × 95)/13

⇔ x = 760.

Hence, the selling price of the watch is $ 760.


More worked-out examples on calculating profit or loss to get the basic concepts to solve the questions and answers with explanation.

Examples on Calculating Profit or Loss

3. Greg sells two watches for $ 1955 each, gaining 15% on one and losing 15% on the other. Find her gain or loss per cent in the whole transaction. 

Solution: 

SP of the first watch = $ 1955. 

Gain% = 15%. 

Therefore, CP of the first watch = [{100/(100 + gain %)} × SP]

                                                   = $ [{100/(100 + 15)} × 1955] 

                                                   = $ {(100/115) × 1955}

                                                   = $ 1700. 

SP of the second watch = $ 1955. 

Loss% = 15%. 

CP of the second watch = [{100/(100 - loss %)} × SP] 

                                      = $ [{100/(100 - 15)} × 1955] 

                                      = $ {(100/85) × 1955}

                                      = $ 2300

Total CP of the two watches = $ (1700 + 2300) = $ 4000. 

Total SP of the two watches = $ (1955 × 2) = $ 3910. 

Since (SP) < (CP), there is a loss in the whole transaction. 

Loss = $ (4000 - 3910) = $ 90. 

Therefore, Loss% = {(90/4000) × 100} % = 2¹/₄%

Hence, Greg loses 2¹/₄% in the whole transaction. 


4. Nick purchased two hand bags for $ 750 each. He sold these bags, gaining 6% on one and losing 4% on the other. Find his gain or loss per cent in the whole transaction. 

Solution:

CP of the first handbag = $ 750.

Gain% = 6%.

SP of the first handbag = [{(100 + gain %)/100} × CP]

                                     = $ [{(100 + 6)/100} × 750]

                                     = $ {(106/100) × 750}

                                     = $ 795.

CP of the second handbag = $ 750.

Loss% = 4%.

SP of second handbag = [{(100 - loss %)/100} × CP]

                                    = $ [{(100 - 4)/100} × 750]

                                    = $ {(96/100) × 750}

                                    = $ 720.

Total CP of the two handbags = $ (750 × 2) = $ 1500.

Total SP of the two handbags = $ (795 + 720) = $ 1515.

Since (SP) > (CP), there is a gain in the whole transaction

Gain = $ (1515 - 1500) = $ 15.

Gain % = {(gain/Total CP) × 100}%

             = {(15/1500) × 100}%

             = 1%.

Hence, Nick gains 1% in the whole transaction.




5. A reduction of20% in the price of sugar enables Mrs. Jones to buy an extra 5 kg of it for $ 320.

Find:

(i) the original rate, and

(ii) the reduced rate per kg.

Solution:

Let the original rate be $ x per kg.

Reduced rate = (80% of $ x) per kg

                      = $ (x × 80/100) per kg

Quantity of sugar for $ 320 at original rate = 320/x kg

Quantity of sugar for $ 320 at the new rate = 320/(4x/5) kg

                                                                     = (320 × 5)/4x kg

                                                                     = 400/x kg.

Therefore, (400/x) - (320/x) = 5

⇔ 5x = (400 - 300)

⇔ 5x = 80

⇔ x = 16

(i) Original rate = $ 16 per kg

(ii) Reduced rate = (4/5 × 16) per kg

                             = $ 64/5 per kg

                             = $ 12.80 per kg.



 Profit, Loss and Discount

Calculating Profit Percent and Loss Percent

Word Problems on Profit and Loss

Examples on Calculating Profit or Loss

Practice Test on Profit and Loss

Discount

Practice Test on Profit Loss and Discount


 Profit, Loss and Discount - Worksheets

Worksheet to Find Profit and Loss

Worksheets on Profit and Loss Percentage

Worksheet on Gain and Loss Percentage

Worksheet on Discounts











7th Grade Math Problems

8th Grade Math Practice 

From Examples on Calculating Profit or Loss to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Divide Decimals? | Dividing Decimals by Decimals | Examples

    May 05, 25 02:58 AM

    Dividing a Decimal by a Whole Number
    Dividing Decimals by Decimals

    Read More

  2. Word Problems on Decimals | Decimal Word Problems | Decimal Home Work

    May 05, 25 01:27 AM

    Word problems on decimals are solved here step by step. The product of two numbers is 42.63. If one number is 2.1, find the other. Solution: Product of two numbers = 42.63 One number = 2.1

    Read More

  3. Worksheet on Multiplying Decimals | Product of the Two Decimal Numbers

    May 05, 25 01:05 AM

    Practice the math questions given in the worksheet on multiplying decimals. Multiply the decimals to find the product of the two decimal numbers, same like multiplying whole numbers.

    Read More

  4. Multiplication of a Decimal by 10, 100, 1000 | Multiplying decimals

    May 05, 25 12:23 AM

    Multiplication of a Decimal by 10, 100, 1000
    The working rule of multiplication of a decimal by 10, 100, 1000, etc... are: When the multiplier is 10, 100 or 1000, we move the decimal point to the right by as many places as number of zeroes after…

    Read More

  5. Multiplication of Decimal Numbers | Multiplying Decimals | Decimals

    May 04, 25 11:38 PM

    Multiplication of Decimal Numbers
    The rules of multiplying decimals are: (i) Take the two numbers as whole numbers (remove the decimal) and multiply. (ii) In the product, place the decimal point after leaving digits equal to the total…

    Read More