Subscribe to our YouTube channel for the latest videos, updates, and tips.


Symmetric Relation on Set

Here we will discuss about the symmetric relation on set.

Let A be a set in which the relation R defined. Then R is said to be a symmetric relation, if (a, b) ∈ R ⇒ (b, a) ∈ R, that is, aRb ⇒ bRa for all (a, b) ∈ R.

Consider, for example, the set A of natural numbers. If a relation A be defined by “x + y = 5”, then this relation is symmetric in A, for

a + b = 5 ⇒ b + a = 5

But in the set A of natural numbers if the relation R be defined as ‘x is a divisor of y’, then the relation R is not symmetric as 3R9 does not imply 9R3; for, 3 divides 9 but 9 does not divide 3.

For a symmetric relation R, R1 = R.


Solved example on symmetric relation on set:

1. A relation R is defined on the set Z by “a R b if a – b is divisible by 5” for a, b ∈ Z. Examine if R is a symmetric relation on Z.

Solution:

Let a, b ∈ Z and aRb hold. Then a – b is divisible by 5 and therefore b – a is divisible by 5.

Thus, aRb ⇒ bRa and therefore R is symmetric.


2. A relation R is defined on the set Z (set of all integers) by “aRb if and only if 2a + 3b is divisible by 5”, for all a, b ∈ Z. Examine if R is a symmetric relation on Z.

Solution:

Let a, b ∈ Z and aRb holds i.e., 2a + 3a = 5a, which is divisible by 5. Now, 2a + 3a = 5a – 2a + 5b – 3b = 5(a + b) – (2a + 3b) is also divisible by 5.

Therefore aRa holds for all a in Z i.e. R is reflexive.


3. Let R be a relation on Q, defined by R = {(a, b) : a, b ∈ Q and a – b ∈ Z}. Show that R is Symmetric relation.

Solution:

Given R = {(a, b) : a, b ∈ Q, and a – b ∈ Z}.

Let ab ∈ R ⇒ (a – b) ∈ Z, i.e. (a – b) is an integer.

               ⇒ -(a – b) is an integer

               ⇒ (b – a) is an integer

               ⇒ (b, a) ∈ R

Thus, (a, b) ∈ R ⇒ (b, a) ∈ R

Therefore, R is symmetric.


4. Let m be given fixed positive integer.

Let R = {(a, a) : a, b  ∈ Z and (a – b) is divisible by m}.

Show that R is symmetric relation.

Solution:

Given R = {(a, b) : a, b ∈ Z, and (a – b) is divisible by m}.

Let ab ∈ R . Then,

     ab ∈ R ⇒ (a – b) is divisible by m

               ⇒ -(a – b) is divisible by m

               ⇒ (b – a) is divisible by m

               ⇒ (b, a) ∈ R

Thus, (a, b) ∈ R ⇒ (b, a) ∈ R

Therefore, R is symmetric relation on set Z.

Set Theory

Sets

Representation of a Set

Types of Sets

Pairs of Sets

Subset

Practice Test on Sets and Subsets

Complement of a Set

Problems on Operation on Sets

Operations on Sets

Practice Test on Operations on Sets

Word Problems on Sets

Venn Diagrams

Venn Diagrams in Different Situations

Relationship in Sets using Venn Diagram

Examples on Venn Diagram

Practice Test on Venn Diagrams

Cardinal Properties of Sets



7th Grade Math Problems

8th Grade Math Practice

From Symmetric Relation on Set to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 10, 25 11:41 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More