Sum of the Squares of First n Natural Numbers

We will discuss here how to find the sum of the squares of first n natural numbers.

Let us assume the required sum = S

Therefore, S = 1\(^{2}\) + 2\(^{2}\) + 3\(^{2}\) + 4\(^{2}\) + 5\(^{2}\) + ................... + n\(^{2}\)

Now, we will use the below identity to find the value of S:

n\(^{3}\) - (n - 1)\(^{3}\) = 3n\(^{2}\) - 3n + 1

Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get

                     1\(^{3}\) - 0\(^{3}\) = 3 . 1\(^{2}\) - 3 ∙ 1 + 1

                     2\(^{3}\) - 1\(^{3}\) = 3 . 2\(^{2}\) - 3 ∙ 2 + 1

                     3\(^{3}\) - 2\(^{3}\) = 3 . 3\(^{2}\) - 3 ∙ 3 + 1

                     4\(^{3}\) - 3\(^{3}\) = 3 . 4\(^{2}\) - 3 ∙ 4 + 1

                     ......................................

              n\(^{3}\) - (n - 1)\(^{3}\) = 3 ∙ n\(^{2}\) - 3 ∙ n + 1
              ____                                _____

Adding we get, n\(^{3}\) - 0\(^{3}\) = 3(1\(^{2}\) + 2\(^{2}\) + 3\(^{2}\) + 4\(^{2}\) + ........... + n\(^{2}\)) - 3(1 + 2 + 3 + 4 + ........ + n) + (1 + 1 + 1 + 1 + ......... n times)

⇒ n\(^{3}\) = 3S - 3 ∙ \(\frac{n(n + 1)}{2}\) + n

⇒ 3S = n\(^{3}\) + \(\frac{3}{2}\)n(n + 1) – n = n(n\(^{2}\) - 1) + \(\frac{3}{2}\)n(n + 1)

⇒ 3S = n(n + 1)(n - 1 + \(\frac{3}{2}\))

⇒ 3S = n(n + 1)(\(\frac{2n - 2 + 3}{2}\))

⇒ 3S = \(\frac{n(n + 1)(2n + 1)}{2}\)

Therefore, S = \(\frac{n(n + 1)(2n + 1)}{6}\)

i.e., 1\(^{2}\) + 2\(^{2}\) + 3\(^{2}\) + 4\(^{2}\) + 5\(^{2}\) + ................... + n\(^{2}\) = \(\frac{n(n + 1)(2n + 1)}{6}\)

Thus, the sum of the squares of first n natural numbers = \(\frac{n(n + 1)(2n + 1)}{6}\)

 

Solved examples to find the sum of the squares of first n natural numbers:

1. Find the sum of the squares of first 50 natural numbers.

Solution:

We know the sum of the squares of first n natural numbers (S) = \(\frac{n(n + 1)(2n + 1)}{6}\)

Here n = 50

Therefore, the sum of the squares of first 50 natural numbers = \(\frac{50(50 + 1)(2 × 50 + 1)}{6}\)

= \(\frac{50 × 51 × 101}{6}\)

= \(\frac{257550}{6}\)

= 42925


2. Find the sum of the squares of first 100 natural numbers.

Solution:

We know the sum of the squares of first n natural numbers (S) = \(\frac{n(n + 1)(2n + 1)}{6}\)

Here n = 100

Therefore, the sum of the squares of first 50 natural numbers = \(\frac{100(100 + 1)(2 × 100 + 1)}{6}\)

= \(\frac{100 × 101 × 201}{6}\)

= \(\frac{2030100}{6}\)

= 338350

Arithmetic Progression


11 and 12 Grade Math

From Sum of the Squares of First n Natural Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.