Sum of the Cubes of First n Natural Numbers

We will discuss here how to find the sum of the cubes of first n natural numbers.

Let us assume the required sum = S

Therefore, S = 1\(^{3}\) + 2\(^{3}\) + 3\(^{3}\) + 4\(^{3}\) + 5\(^{3}\) + ................... + n\(^{3}\)

Now, we will use the below identity to find the value of S:

n\(^{4}\) - (n - 1)\(^{4}\) = 4n\(^{3}\) - 6n\(^{2}\) + 4n - 1

Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get

                    1\(^{4}\) - 0\(^{4}\) = 4 ∙ 1\(^{3}\) - 6 ∙ 1\(^{2}\) + 4 ∙ 1 - 1

                    2\(^{4}\) - 1\(^{4}\) = 4 ∙ 2\(^{3}\) - 6 ∙ 2\(^{2}\) + 4 ∙ 2 - 1

                    3\(^{4}\) - 2\(^{4}\) = 4 ∙ 3\(^{3}\) - 6 ∙ 3\(^{2}\) + 4 ∙ 3 - 1

                    4\(^{4}\) - 3\(^{4}\) = 4 ∙ 4\(^{3}\) - 6 ∙ 4\(^{2}\) + 4 ∙ 4 - 1

                    ........ .................... ...............

             n\(^{4}\) - (n - 1)\(^{4}\) = 4 . n\(^{3}\) - 6 ∙ n\(^{2}\) + 4 ∙ n - 1

                                                                               

Adding we get, n\(^{4}\) - 0\(^{4}\) = 4(1\(^{3}\) + 2\(^{3}\) + 3\(^{3}\) + 4\(^{3}\) + ........... + n\(^{3}\)) - 6(1\(^{2}\) + 2\(^{2}\) + 3\(^{2}\) + 4\(^{2}\) + ........ + n\(^{2}\)) + 4(1 + 2 + 3 + 4 + ........ + n) - (1 + 1 + 1 + 1 + ......... n times)

n\(^{4}\) = 4S - 6 ∙ \(\frac{n(n + 1)(2n + 1)}{6}\) + 4 ∙ \(\frac{n(n + 1)}{2}\) - n

⇒ 4S = n\(^{4}\) + n(n + 1)(2n + 1) - 2n(n + 1) + n

⇒ 4S = n\(^{4}\) + n(2n\(^{2}\) + 3n + 1) – 2n\(^{2}\) - 2n + n

⇒ 4S = n\(^{4}\) + 2n\(^{3}\) + 3n\(^{2}\) + n - 2n\(^{2}\) - 2n + n

⇒ 4S = n\(^{4}\) + 2n\(^{3}\) + n\(^{2}\)

⇒ 4S = n\(^{2}\)(n\(^{2}\) + 2n + 1)

⇒ 4S = n\(^{2}\)(n + 1)\(^{2}\)

Therefore, S = \(\frac{n^{2}(n + 1)^{2}}{4}\) = {\(\frac{n(n + 1)}{2}\)}\(^{2}\) = (Sum of the first n natural numbers)\(^{2}\)

i.e., 1\(^{3}\) + 2\(^{3}\) + 3\(^{3}\) + 4\(^{3}\) + 5\(^{3}\) + ................... + n\(^{3}\) = {\(\frac{n(n + 1)}{2}\)}\(^{2}\)

Thus, the sum of the cubes of first n natural numbers = {\(\frac{n(n + 1)}{2}\)}\(^{2}\)

 

Solved examples to find the sum of the cubes of first n natural numbers:

1. Find the sum of the cubes of first 12 natural numbers.

Solution:

Sum of the cubes of first 12 natural numbers

i.e., 1\(^{3}\) + 2\(^{3}\) + 3\(^{3}\) + 4\(^{3}\) + 5\(^{3}\) + ................... + 12\(^{3}\)

We know the sum of the cubes of first n natural numbers (S) = {\(\frac{n(n + 1)}{2}\)}\(^{2}\)

Here n = 12

Therefore, the sum of the cubes of first 12 natural numbers = {\(\frac{12(12 + 1)}{2}\)}\(^{2}\)

= {\(\frac{12 × 13}{2}\)}\(^{2}\)

= {6 × 13}\(^{2}\)

= (78)\(^{2}\)

= 6084

 

2. Find the sum of the cubes of first 25 natural numbers.

Solution:

Sum of the cubes of first 25 natural numbers

i.e., 1\(^{3}\) + 2\(^{3}\) + 3\(^{3}\) + 4\(^{3}\) + 5\(^{3}\) + ................... + 25\(^{3}\)

We know the sum of the cubes of first n natural numbers (S) = {\(\frac{n(n + 1)}{2}\)}\(^{2}\)

Here n = 25

Therefore, the sum of the cubes of first 25 natural numbers = {\(\frac{25(25 + 1)}{2}\)}\(^{2}\)

= {\(\frac{12 × 26}{2}\)}\(^{2}\)

= {25 × 13}\(^{2}\)

= (325)\(^{2}\)

= 105625

Arithmetic Progression





11 and 12 Grade Math

From Sum of the Cubes of First n Natural Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.