Problems on Parallelogram

These are the various types of solved problems on parallelogram.

1. Prove that any two adjacent angles of a parallelogram are supplementary.

Solution:

Let ABCD be a parallelogram

Problems on Parallelogram

Then, AD ∥ BC and AB is a transversal. 

Therefore, A + B = 180° [Since, sum of the interior angles on the same side of the transversal is 180°] 

Similarly, ∠B + ∠C = 180°, ∠C + ∠D = 180° and ∠D + ∠A = 180°. 

Thus, the sum of any two adjacent angles of a parallelogram is 180°. 

Hence, any two adjacent angles of a parallelogram are supplementary. 



2. Two adjacent angles of a parallelogram are as 2 : 3. Find the measure of each of its angles.

Solution:

Let ABCD be a given parallelogram

Problems on Parallelogram

Then, ∠A and ∠B are its adjacent angles.

Let ∠A = (2x)° and ∠B = (3x)°.

Then, ∠A + ∠B = 180° [Since, sum of adjacent angles of a ∥gm is 180°]

⇒ 2x + 3x = 180

⇒ 5x = 180

⇒ x = 36.

Therefore, ∠A = (2 × 36)° = 72° and ∠B = (3 × 36°) = 108°.

Also, ∠B + ∠C = 180° [Since, ∠B and ∠C are adjacent angles]

= 108° + ∠C = 180° [Since, ∠B = 108°]

∠C = (180° - 108°) = 72°.

Also, ∠C + ∠D = 180° [Since, ∠C and ∠D are adjacent angles]

⇒ 72° + ∠D = 180°

⇒ ∠D = (180° - 72°) 108°.

Therefore, ∠A = 72°, ∠B = 108°, ∠C = 72°and ∠D = 108°.



3. In the adjoining figure, ABCD is a parallelogram in which ∠A = 75°. Find the measure of each of the angles ∠B, ∠C and ∠D.

Solution:

It is given that ABCD is a parallelogram in which ∠A = 75°.

Problems on Parallelogram

Since the sum of any two adjacent angles of a parallelogram is 180°,

∠A + ∠B = 180°

⇒ 75° + ∠B = 180°

⇒∠B = (180° - 75°) = 105°

Also, ∠B + ∠C = 180° [Since, ∠B and ∠C are adjacent angles]

⇒ 105° + ∠C = 180°

⇒ ∠C = (180° - 105°) = 75°.

Further, ∠C + ∠D = 180° [Since, ∠C and ∠D are adjacent angles]

⇒ 75° + ∠D = 180°

⇒ ∠D = (180° - 75°) = 105°.

Therefore, ∠B = 105°, ∠C = 75° and ∠D = 105°.



4. In the adjoining figure, ABCD is a parallelogram in which

∠BAD = 75° and ∠DBC = 60°. Calculate:

(i) ∠CDB and (ii) ∠ADB.

Problems on Parallelogram

Solution:

We know that the opposite angles of a parallelogram are equal.

Therefore, ∠BCD = ∠BAD = 75°.

(i) Now, in ∆ BCD, we have

∠CDB + ∠DBC + ∠BCD = 180° [Since, sum of the angles of a triangle is 180°]

⇒ ∠CDB + 60° + 75° = 180°

⇒ ∠CDB + 135° = 180°

⇒ ∠CDB = (180° - 135°) = 45°.

(ii) AD ∥ BC and BD is the transversal.

Therefore, ∠ADB = ∠DBC = 60° [alternate interior angles]

Hence, ∠ADB = 60°.


5. In the adjoining figure, ABCD is a parallelogram in which

∠CAD = 40°, ∠BAC = 35° and ∠COD = 65°.

Calculate: (i) ∠ABD (ii) ∠BDC (iii) ∠ACB (iv) ∠CBD.

Problems on Parallelogram

Solution:

(i) ∠AOB = ∠COD = 65° (vertically opposite angles)

Now, in ∆OAB, we have:

∠OAB + ∠ABO + ∠AOB =180° [Since, sum of the angles of a triangle is 180°]

⇒ 35°+ ∠ABO + 65° = 180°

⇒ ∠ABO + 100° = 180°

⇒ ∠ABO = (180° - 100°) = 80°

⇒ ∠ABD = ∠ABO = 80°.

(ii) AB ∥ DC and BD is a transversal.

Therefore, ∠BDC = ∠ABD = 80° [alternate interior angles]

Hence, ∠BDC = 80°.

(iii) AD ∥ BC and AC is a transversal.

Therefore, ∠ACB = ∠CAD = 40° [alternate interior angles]

Hence, ∠ACB = 40°.

(iv) ∠BCD = ∠BAD = (35° + 40°) = 75° [opposite angles of a parallelogram]

Now, in ∆CBD, we have

∠BDC + ∠BCD + ∠CBD = 180° [sum of the angles of a triangle is 180°]

⇒ 80° + 75° + ∠CBD = 180°

⇒ 155° + ∠CBD = 180°

⇒ ∠CBD = (180° - 155°) = 25°.

Hence, ∠CBD = 25°.



6. In the adjoining figure, ABCD is a parallelogram, AO and BO are the bisectors of ∠A and ∠B respectively. Prove that ∠AOB = 90°.

Problems on Parallelogram

Solution:

We know that the sum of two adjacent angles of a parallelogram is 180°

Therefore, ∠A + ∠B = 180° ……………. (i)

Since AO and BO are the bisectors of ∠A and ∠B, respectively, we have

∠OAB = 1/2∠A and ∠ABO = 1/2∠B.

From ∆OAB, we have

∠OAB + ∠AOB + ∠ABO = 180° [Since, sum of the angles of a triangle is 180°]

⇒ ¹/₂∠A + ∠ABO + ¹/₂∠B = 180°

⇒ ¹/₂(∠A + ∠B) + ∠AOB = 180°

⇒ (¹/₂ × 180°) + ∠AOB = 180° [using (i)]

⇒ 90° + ∠AOB = 180°

⇒ ∠AOB = (180° - 90°) = 90°.

Hence, ∠AOB = 90°.



7. The ratio of two sides of a parallelogram is 4 : 3. If its perimeter is 56 cm, find the lengths of its sides.

Solution:

Let the lengths of two sides of the parallelogram be 4x cm and 3x cm respectively.

Then, its perimeter = 2(4x + 3x) cm = 8x + 6x = 14x cm.

Therefore, 14x = 56 ⇔ x = ⁵⁶/₁₄ = 4.

Therefore, one side = (4 × 4) cm = 16 cm and other side = (3 × 4) cm = 12 cm.



8. The length of a rectangle is 8 cm and each of its diagonals measures 10 cm. Find its breadth.

Solution:

Let ABCD be the given rectangle in which length AB = 8 cm and diagonal AC = 10 cm.

Problems on Parallelogram

Since each angle of a rectangle is a right angle, we have

∠ABC = 90°.

From right ∆ABC, we have

AB² + BC² = AC² [Pythagoras’ Theorem]

⇒ BC² = (AC² - AB²) = {(1O)² - (8)²} = (100 - 64) = 36

⇒ BC = √36 = 6cm.

Hence, breadth = 6 cm.



9. In the adjacent figure, ABCD is a rhombus whose diagonals AC and BD intersect at a point O. If side AB = 10cm and diagonal BD = 16 cm, find the length of diagonal AC.

Problems on Parallelogram

Solution:

We know that the diagonals of a rhombus bisect each other at right angles

Therefore, BO = ¹/₂BD = (¹/₂ × 16) cm = 8 cm, AB = 10 cm and ∠AOB = 90°.

From right ∆OAB, we have

AB² = AO² + BO²

⇒ AO² = (AB² – BO²) = {(10) ² - (8)²} cm²

                             = (100 - 64) cm²

                             = 36 cm²

     ⇒ AO = √36 cm = 6 cm.

Therefore, AC = 2 × AO = (2 × 6) cm = 12 cm.



Parallelogram

Parallelogram

Properties of a Rectangle Rhombus and Square

Problems on Parallelogram

Practice Test on Parallelogram


Parallelogram - Worksheet

Worksheet on Parallelogram







8th Grade Math Practice

From Problems on Parallelogram to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More