The complement of a set using Venn diagram is a subset of U. Let U be the universal set and let A be a set such that A ⊂ U. Then, the complement of A with respect to U is denoted by A' or A\(^{C}\) or U – A or ~ A and is defined the set of all those elements of U which are not in A.

Thus, A' = {x ∈ U : x ∉ A}.

Clearly, x ∈ A' ⇒ x ∉ A

(A – B) is also called the complement of B relative to A. From the definition it is clear that the complement of the whole set in a set is the null set; for U' = U – U = ∅ again ∅' = U - ∅ = U also (A')' = U – A' = U – (U – A) = A. If the set of real numbers be the universal set, then the set of rational numbers and the set of irrational numbers are complements of each other.

Example on complement of a set using Venn diagram:

**1.** Let
the set of natural numbers N = {1, 2, 3, ………..} be the universal set and let A
= {2, 4, 6, 8, ……….}

Then A' = {1, 3, 5, ………}

**2.** If U = {1, 2, 3, 4, 5, 6, 7, 8, 9}
and A = {1, 3, 5, 7, 9} then A' = {2, 4, 6, 8}

**3.** If U = {1, 2, 3, 4, 5, 6} and A =
{2, 3, 4} then U – A = ~ A = A' = {1, 5, 6}.

**4.** U = {1, 2, 3, 4, 5, 6} be the universal set and A = {1,
3, 5} then A' = {2, 4, 6}.

**Properties of complement
of a set:**

**1.** U' = ∅

**2.** ∅' = U

**3.** A U A' = U For
any subset A

**4.** A ∩ A' = ∅
For any subset A

**5.** (A')' = A For
any subset A.

● **Set Theory**

● **Sets**

● **Subset**

● **Practice Test on Sets and Subsets**

● **Problems on Operation on Sets**

● **Practice Test on Operations on Sets**

● **Venn Diagrams in Different Situations**

● **Relationship in Sets using Venn Diagram**

● **Practice Test on Venn Diagrams**

**8th Grade Math Practice**

**From Complement of a Set using Venn Diagram to HOME PAGE**

**Didn't find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.**

## New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.