Addition and Subtraction of Unlike Fractions



In addition and subtraction of unlike fractions, we first convert them into corresponding equivalent like fractions and then they are added or subtracted.



Following steps are used to do the same.



Step I:

Obtain the fractions and their denominators.



Step II:

Find the LCM (least common multiple) of the denominators.



Step III:

Convert each fraction into an equivalent fraction having its denominator equal to the LCM (least common multiple) obtained in Step II.



Step IV:

Add or subtract like fractions obtained in Step III.



For Example:



1. Add 2/3 and 3/7.

Solution:

The LCM (least common multiple) of the denominators 3 and 7 is 21.



So, we convert the given fractions into equivalent fractions with denominator 21.

We have,

2/3 + 3/7

= (2 × 7)/(3 × 7) + (3 × 3)/(7 × 3)

[since 21 ÷ 3 = 7 and 21 ÷ 7 = 3]

= 14/21 + 9/21

= (14 + 9)/21

= 23/21




2. 1/6 + 3/8

Solution:

The LCM (least common multiple) of the denominators 6 and 8 is 24.



So, we convert the given fractions into equivalent fractions with denominator 24.

We have,

= 1/6 = (1 × 4)/(6 × 4)= 4/24 [since 24 ÷ 6 = 4]

and, 3/8 = (3 × 3)/(8 × 3) = 9/24 [since 24 ÷ 8 = 3]

Thus, 1/6 + 3/8 = 4/24 + 9/24

= (4 + 9)/24

= 13/24




3. Add 24/5 and 35/6.

Solution:

We have,

24/5 = (2 × 5 + 4)/5 = (10 + 4)/5 = 14/5

and, 35/6 = (3 × 6 + 5)/6 = 23/6

Now, we will compute 14/5 + 23/6


The LCM (least common multiple) of the denominators 5 and 6 is 30.



So, we convert the given fractions into equivalent fractions with denominator 30.

We have,

= 14/5 = (14 × 6)/(5 × 6) = 84/30 [since 30 ÷ 5 = 6]

and, 23/6 = (23 × 5)/(6 × 5) = 115/30 [since 30 ÷ 6 = 5]

Thus, 14/5 + 23/6 = 84/30 + 115/30

= (84 + 115)/30

= 199/30



= 619/30





4. Find the difference of 17/24 and 15/16.

Solution:

The LCM (least common multiple) of the denominators 24 and 16 is 48.



[Therefore, LCM = 2 × 2 × 2 × 2 × 3 = 48]

So, we convert the given fractions into equivalent fractions with denominator 48.

We have,

= 17/24 = (17 × 2)/(24 × 2) = 34/48 [since 48 ÷ 24 = 2]

and, 15/16 = (15 × 3)/(16 × 3) = 45/48 [since 48 ÷ 16 = 3]

Clearly, 45/48 > 34/48

Therefore, 15/16 > 17/24

Hence, difference = 15/1617/24

= 45/4834/48

= (45 – 34)/48

= 11/48.




5. Simplify: 42/3 – 31/4 + 2 1/6

Solution:

We have,

42/3 – 31/4 + 21/6

= (4 × 3 + 2)/3(3 × 4 + 1)/4 + (2 × 6 +1)/6

= (12 + 2)/3(12 +1)/4 + (12+1)/6

= 14/313/4 + 13/6


The LCM (least common multiple) of the denominators 3, 4 and 6 is 12.

[Therefore, LCM = 2 × 2 × 3 = 12]

So, we convert the given fractions into equivalent fractions with denominator 12.

We have,

= (14 × 4)/(3 × 4)(13 × 3)/(4 × 3) + (13 × 2)/(6 × 2)

= 56/1239/12 + 26/12

= (56 – 39 + 26)/12

= (82 – 39)/12

= 43/12



= 37/12



Related Links :



Fraction.
  • Representations of Fractions on a Number Line.
  • Fraction as Division.
  • Types of Fractions.
  • Conversion of Mixed Fractions into Improper Fractions.
  • Conversion of Improper Fractions into Mixed Fractions.
  • Equivalent Fractions.
  • Interesting Fact about Equivalent Fractions.
  • Fractions in Lowest Terms.
  • Like and Unlike Fractions.
  • Comparing Like Fractions.
  • Comparing Unlike Fractions.
  • Addition and Subtraction of Like Fractions.
  • Addition and Subtraction of Unlike Fractions.
  • Inserting a Fraction between Two Given Fractions.




  • Numbers Page

    6th Grade Page

    From Addition and Subtraction of Unlike Fractions to HOME PAGE