Worked-out Problems on Locus of a
Moving Point

To solve the worked-out problems on locus of a moving point we need to follow the method of obtaining the equation of the locus. Recall and consider the steps to find the equation to the locus of a moving point.

Worked-out Problems on Locus of a Moving Point:

1. The sum of the intercept cut off from the axes of co-ordinates by a variable straight line is 10 units. Find the locus of the point which divides internally the part of the straight line intercepted between the axes of co-ordinates in the ratio 2 : 3.

Solution:

Let us assume that the variable straight line at any position intersects the x-axis at A (a, 0) and the y-axis at B (0, b).



clearly, AB is the part of the line intercepted between the co-ordinates axes. Further assume that the point (h, k) divides the line-segment AB internally in the ratio 2 : 3. Then we have,

H = (2 · 0 + 3 · a)/(2 + 3)

or, 3a = 5h

or, a = 5h/3

And k = (2 · b + 3 · a)/(2 + 3)

or, 2b = 5k

or, b = 5k/2

Now, by problem,

A + b = 10

or, 5h/3 + 5k/2 = 10

or, 2h + 3k = 12

Therefore, the required equation to the locus of (h, k) is 2x + 3y = 12.


2. For all value of the co-ordinates of a moving point P are (a cos θ, b sin θ); find the equation to the locus of P.

Solution: Let (x, y) be the co-ordinates of any point on the locus traced out by the moving point P. then we shall have ,

x = a cos θ

or, x/a = cos θ

and y = b sin θ

or, y/b = sin θ

x2/a2 + y2/b2 = cos2 θ + sin2 θ

or, x2/a2 + y2/b2 = 1

Which is the required equation to the locus of P.


3. The co-ordinates of any position of a moving point P are given by {(7t – 2)/(3t + 2)}, {(4t + 5)/(t – 1)}, where t is a variable parameter. Find the equation to the locus of P.

Solution: Let (x, y) be the co-ordinates of any point on the locus traced out by the moving point P. then, we shall have,

x = (7t – 2)/(3t + 2)

or, 7t – 2 = 3tx + 2x

or, t(7 – 3x) = 2x + 2

or, t = 2(x + 1)/(7 – 3x) …………………………. (1)

And

y = (4t + 5)/(t – 1)

or, yt – y = 4t + 5

Or, t (y – 4) = y +5

or , t = (y + 5)/(y – 4)………………………….. (2)

From (1) and (2) we get,

(2x + 2)/(7 – 3x) = (y + 5)/( y – 4)

or, 2xy - 8x + 2y – 8 = 7y – 3xy + 35 – 15x

or, 5xy + 7x -5y = 43, which is the required education to the locus of the moving point P.

 Locus








11 and 12 Grade Math

From Worked-out Problems on Locus of a Moving Point to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More