# Word Problems on Arithmetic Mean

Here we will learn to solve the three important types of word problems on arithmetic mean (average). The questions are mainly based on average (arithmetic mean), weighted average and average speed.

How to solve average (arithmetic mean) word problems?

To solve various problems we need to follow the uses of the formula for calculating average (arithmetic mean)

Average = (Sums of the observations)/(Number of observations)

Follow the explanation to solve the word problems on arithmetic mean (average):

1. The heights of five runners are 160 cm, 137 cm, 149 cm, 153 cm and 161 cm respectively. Find the mean height per runner.

Solution:

Mean height = Sum of the heights of the runners/number of runners

= (160 + 137 + 149 + 153 + 161)/5 cm

= 760/5 cm

= 152 cm.

Hence, the mean height is 152 cm.

2. Find the mean of the first five prime numbers.

Solution:

The first five prime numbers are 2, 3, 5, 7 and 11.

Mean = Sum of the first five prime numbers/number of prime numbers

= (2 + 3 + 5 + 7 + 11)/5

= 28/5

= 5.6

Hence, their mean is 5.6

3. Find the mean of the first six multiples of 4.

Solution:

The first six multiples of 4 are 4, 8, 12, 16, 20 and 24.

Mean = Sum of the first six multiples of 4/number of multiples

= (4 + 8 + 12 + 16 + 20 + 24)/6

= 84/6

= 14.

Hence, their mean is 14.

4. Find the arithmetic mean of the first 7 natural numbers.

Solution:

The first 7 natural numbers are 1, 2, 3, 4, 5, 6 and 7.

Let x denote their arithmetic mean.

Then mean = Sum of the first 7 natural numbers/number of natural numbers

x = (1 + 2 + 3 + 4 + 5 + 6 + 7)/7

= 28/7

= 4

Hence, their mean is 4.

5. If the mean of 9, 8, 10, x, 12 is 15, find the value of x.

Solution:

Mean of the given numbers = (9 + 8 + 10 + x + 12)/5 = (39 + x)/5

According to the problem, mean = 15 (given).

Therefore, (39 + x)/5 = 15

⇒ 39 + x = 15 × 5

⇒ 39 + x = 75

⇒ 39 - 39 + x = 75 - 39

⇒ x = 36

Hence, x = 36.

More examples on the worked-out word problems on arithmetic mean:

6. If the mean of five observations x, x + 4, x + 6, x + 8 and x + 12 is 16, find the value of x.

Solution: Mean of the given observations

= x + (x + 4) + (x + 6) + (x + 8) + (x + 12)/5

= (5x + 30)/5

According to the problem, mean = 16 (given).

Therefore, (5x + 30)/5 = 16

⇒ 5x + 30 = 16 × 5

⇒ 5x + 30 = 80

⇒ 5x + 30 - 30 = 80 - 30

⇒ 5x = 50

⇒ x = 50/5

⇒ x = 10

Hence, x = 10.

148 + 153 + 146 + 147 + 154

7. The mean of 40 numbers was found to be 38. Later on, it was detected that a number 56 was misread as 36. Find the correct mean of given numbers.

Solution:

Calculated mean of 40 numbers = 38.

Therefore, calculated sum of these numbers = (38 × 40) = 1520.

Correct sum of these numbers

= [1520 - (wrong item) + (correct item)]

= (1520 - 36 + 56)

= 1540.

Therefore, the correct mean = 1540/40 = 38.5.

8. The mean of the heights of 6 boys is 152 cm. If the individual heights of five of them are 151 cm, 153 cm, 155 cm, 149 cm and 154 cm, find the height of the sixth boy.

Solution:

Mean height of 6 boys = 152 cm.

Sum of the heights of 6 boys = (152 × 6) = 912 cm

Sum of the heights of 5 boys = (151 + 153 + 155 + 149 + 154) cm = 762 cm.

Height of the sixth boy

= (sum of the heights of 6 boys) - (sum of the heights of 5 boys)

= (912 - 762) cm = 150 cm.

Hence, the height of the sixth girl is 150 cm.

Statistics

Word Problems on Arithmetic Mean

Properties of Arithmetic Mean

Problems Based on Average

Properties Questions on Arithmetic Mean

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Fraction as a Part of Collection | Pictures of Fraction | Fractional

Feb 24, 24 04:33 PM

How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

2. ### Fraction of a Whole Numbers | Fractional Number |Examples with Picture

Feb 24, 24 04:11 PM

Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

3. ### Identification of the Parts of a Fraction | Fractional Numbers | Parts

Feb 24, 24 04:10 PM

We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

4. ### Numerator and Denominator of a Fraction | Numerator of the Fraction

Feb 24, 24 04:09 PM

What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.