# Properties of Arithmetic Mean

To solve different types of problems on average we need to follow the properties of arithmetic mean.

Here we will learn about all the properties and proof the arithmetic mean showing the step-by-step explanation.

What are the properties of arithmetic mean?

The properties are explained below with suitable illustration.

Property 1:

If x is the arithmetic mean of n observations x1, x2, x3, . . xn; then

(x1 - x) + (x2 - x) + (x3 - x) + ... + (xn - x) = 0.

Now we will proof the Property 1:

We know that

x = (x1 + x2 + x3 + . . . + xn)/n

⇒ (x1 + x2 + x3 + . . . + xn) = nx. ………………….. (A)

Therefore, (x1 - x) + (x2 - x) + (x3 - x) + ... + (xn - x)

= (x1 + x2 + x3 + . . . + xn) - nx

= (nx - nx), [using (A)].

= 0.

Hence, (x1 - x) + (x2 - x) + (x3 - x) + ... + (xn - x) = 0.

Property 2:

The mean of n observations x1, x2, . . ., xn is x. If each observation is increased by p, the mean of the new observations is (x + p).

Now we will proof the Property 2:

x = (x1 + x2 +. . . + xn)/n

⇒ x1 + x2 + . . . + xn) = nx …………. (A)

Mean of (x1 + p), (x2 + p), ..., (xn + p)

= {(x1 + p) + (x2 + p) + ... + (x1 + p)}/n

= {(x1 + x2 + …… + xn) + np}/n

= (nx + np)/n, [using (A)].

= {n(x + p)}/n

= (x + p).

Hence, the mean of the new observations is (x + p).

Property 3:

The mean of n observations x1, x2, . . ., xn is x. If each observation is decreased by p, the mean of the new observations is (x - p).

Now we will proof the Property 3:

x = (x1 + x2 +. . . + xn)/n

⇒ x1 + x2 + . . . + xn) = nx …………. (A)

Mean of (x1 - p), (x2 - p), ...., (xn - p)

= {(x1 - p) + (x2 - p) + ... + (x1 - p)}/n

= {(x1 + x2 + …. + xn) - np}/n

= (nx - np)/n, [using (A)].

= {n(x - p)}/n

= (x - p).

Hence, the mean of the new observations is (x + p).

Property 4:

The mean of n observations x1, x2, . . .,xn is x. If each observation is multiplied by a nonzero number p, the mean of the new observations is px.

Now we will proof the Property 4:

x = (x1 + x2 + . . . + xn)/n

⇒ x1 + x2 + . . . + xn = nx …………… (A)

Mean of px1, px2, . . ., pxn,

= (px1 + px2 + ... + pxn)/n

= {p(x1 + x2 + ... + xn)}/n

= {p(nx)}/n, [using (A)].

= px.

Hence, the mean of the new observations is px.

Property 5:

The mean of n observations x1, x2, . . ., xn is x. If each observation is divided by a nonzero number p, the mean of the new observations is (x/p).

Now we will proof the Property 5:

x = (x1 + x2 + ... + xn)/n

⇒ x1 + x2 + ... + xn) = nx …………… (A)

Mean of (x1/p), (x2/p), . . ., (xn/p)

= (1/n) ∙ (x1/p + x2/p + …. xn/p)

= (x1 + x2 + ... + xn)/np

= (nx)/(np), [using (A)].

= (x/p).

To get more ideas students can follow the below links to understand how to solve various types of problems using the properties of arithmetic mean.

Statistics

Word Problems on Arithmetic Mean

Properties of Arithmetic Mean

Problems Based on Average

Properties Questions on Arithmetic Mean

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Fraction as a Part of Collection | Pictures of Fraction | Fractional

Feb 24, 24 04:33 PM

How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

2. ### Fraction of a Whole Numbers | Fractional Number |Examples with Picture

Feb 24, 24 04:11 PM

Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

3. ### Identification of the Parts of a Fraction | Fractional Numbers | Parts

Feb 24, 24 04:10 PM

We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

4. ### Numerator and Denominator of a Fraction | Numerator of the Fraction

Feb 24, 24 04:09 PM

What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.