Properties of Arithmetic Mean

To solve different types of problems on average we need to follow the properties of arithmetic mean.

Here we will learn about all the properties and proof the arithmetic mean showing the step-by-step explanation.

What are the properties of arithmetic mean?

The properties are explained below with suitable illustration.


Property 1:

If x is the arithmetic mean of n observations x1, x2, x3, . . xn; then

(x1 - x) + (x2 - x) + (x3 - x) + ... + (xn - x) = 0.

Now we will proof the Property 1:

We know that

x = (x1 + x2 + x3 + . . . + xn)/n

⇒ (x1 + x2 + x3 + . . . + xn) = nx. ………………….. (A)

Therefore, (x1 - x) + (x2 - x) + (x3 - x) + ... + (xn - x)

= (x1 + x2 + x3 + . . . + xn) - nx

= (nx - nx), [using (A)].

= 0.

Hence, (x1 - x) + (x2 - x) + (x3 - x) + ... + (xn - x) = 0.

Property 2:

The mean of n observations x1, x2, . . ., xn is x. If each observation is increased by p, the mean of the new observations is (x + p).

Now we will proof the Property 2:

x = (x1 + x2 +. . . + xn)/n

⇒ x1 + x2 + . . . + xn) = nx …………. (A)

Mean of (x1 + p), (x2 + p), ..., (xn + p)

= {(x1 + p) + (x2 + p) + ... + (x1 + p)}/n

= {(x1 + x2 + …… + xn) + np}/n

= (nx + np)/n, [using (A)].

= {n(x + p)}/n

= (x + p).

Hence, the mean of the new observations is (x + p).

Property 3:

The mean of n observations x1, x2, . . ., xn is x. If each observation is decreased by p, the mean of the new observations is (x - p).

Now we will proof the Property 3:

x = (x1 + x2 +. . . + xn)/n

⇒ x1 + x2 + . . . + xn) = nx …………. (A)

Mean of (x1 - p), (x2 - p), ...., (xn - p)

= {(x1 - p) + (x2 - p) + ... + (x1 - p)}/n

= {(x1 + x2 + …. + xn) - np}/n

= (nx - np)/n, [using (A)].

= {n(x - p)}/n

= (x - p).

Hence, the mean of the new observations is (x + p).

Property 4:

The mean of n observations x1, x2, . . .,xn is x. If each observation is multiplied by a nonzero number p, the mean of the new observations is px.

Now we will proof the Property 4:

x = (x1 + x2 + . . . + xn)/n

⇒ x1 + x2 + . . . + xn = nx …………… (A)

Mean of px1, px2, . . ., pxn,

= (px1 + px2 + ... + pxn)/n

= {p(x1 + x2 + ... + xn)}/n

= {p(nx)}/n, [using (A)].

= px.

Hence, the mean of the new observations is px.

Property 5:

The mean of n observations x1, x2, . . ., xn is x. If each observation is divided by a nonzero number p, the mean of the new observations is (x/p).

Now we will proof the Property 5:

x = (x1 + x2 + ... + xn)/n

⇒ x1 + x2 + ... + xn) = nx …………… (A)

Mean of (x1/p), (x2/p), . . ., (xn/p)

= (1/n) ∙ (x1/p + x2/p + …. xn/p)

= (x1 + x2 + ... + xn)/np

= (nx)/(np), [using (A)].

= (x/p).

To get more ideas students can follow the below links to understand how to solve various types of problems using the properties of arithmetic mean.

Statistics

Arithmetic Mean

Word Problems on Arithmetic Mean

Properties of Arithmetic Mean

Problems Based on Average

Properties Questions on Arithmetic Mean











9th Grade Math

From Properties of Arithmetic Mean to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 25, 25 12:21 PM

    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  2. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  3. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  4. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More

  5. 5th Grade Volume | Units of Volume | Measurement of Volume|Cubic Units

    Jul 20, 25 10:22 AM

    Cubes in Cuboid
    Volume is the amount of space enclosed by an object or shape, how much 3-dimensional space (length, height, and width) it occupies. A flat shape like triangle, square and rectangle occupies surface on…

    Read More