Properties of Arithmetic Mean

To solve different types of problems on average we need to follow the properties of arithmetic mean.

Here we will learn about all the properties and proof the arithmetic mean showing the step-by-step explanation.

What are the properties of arithmetic mean?

The properties are explained below with suitable illustration.


Property 1:

If x is the arithmetic mean of n observations x1, x2, x3, . . xn; then

(x1 - x) + (x2 - x) + (x3 - x) + ... + (xn - x) = 0.

Now we will proof the Property 1:

We know that

x = (x1 + x2 + x3 + . . . + xn)/n

⇒ (x1 + x2 + x3 + . . . + xn) = nx. ………………….. (A)

Therefore, (x1 - x) + (x2 - x) + (x3 - x) + ... + (xn - x)

= (x1 + x2 + x3 + . . . + xn) - nx

= (nx - nx), [using (A)].

= 0.

Hence, (x1 - x) + (x2 - x) + (x3 - x) + ... + (xn - x) = 0.

Property 2:

The mean of n observations x1, x2, . . ., xn is x. If each observation is increased by p, the mean of the new observations is (x + p).

Now we will proof the Property 2:

x = (x1 + x2 +. . . + xn)/n

⇒ x1 + x2 + . . . + xn) = nx …………. (A)

Mean of (x1 + p), (x2 + p), ..., (xn + p)

= {(x1 + p) + (x2 + p) + ... + (x1 + p)}/n

= {(x1 + x2 + …… + xn) + np}/n

= (nx + np)/n, [using (A)].

= {n(x + p)}/n

= (x + p).

Hence, the mean of the new observations is (x + p).

Property 3:

The mean of n observations x1, x2, . . ., xn is x. If each observation is decreased by p, the mean of the new observations is (x - p).

Now we will proof the Property 3:

x = (x1 + x2 +. . . + xn)/n

⇒ x1 + x2 + . . . + xn) = nx …………. (A)

Mean of (x1 - p), (x2 - p), ...., (xn - p)

= {(x1 - p) + (x2 - p) + ... + (x1 - p)}/n

= {(x1 + x2 + …. + xn) - np}/n

= (nx - np)/n, [using (A)].

= {n(x - p)}/n

= (x - p).

Hence, the mean of the new observations is (x + p).

Property 4:

The mean of n observations x1, x2, . . .,xn is x. If each observation is multiplied by a nonzero number p, the mean of the new observations is px.

Now we will proof the Property 4:

x = (x1 + x2 + . . . + xn)/n

⇒ x1 + x2 + . . . + xn = nx …………… (A)

Mean of px1, px2, . . ., pxn,

= (px1 + px2 + ... + pxn)/n

= {p(x1 + x2 + ... + xn)}/n

= {p(nx)}/n, [using (A)].

= px.

Hence, the mean of the new observations is px.

Property 5:

The mean of n observations x1, x2, . . ., xn is x. If each observation is divided by a nonzero number p, the mean of the new observations is (x/p).

Now we will proof the Property 5:

x = (x1 + x2 + ... + xn)/n

⇒ x1 + x2 + ... + xn) = nx …………… (A)

Mean of (x1/p), (x2/p), . . ., (xn/p)

= (1/n) ∙ (x1/p + x2/p + …. xn/p)

= (x1 + x2 + ... + xn)/np

= (nx)/(np), [using (A)].

= (x/p).

To get more ideas students can follow the below links to understand how to solve various types of problems using the properties of arithmetic mean.

Statistics

Arithmetic Mean

Word Problems on Arithmetic Mean

Properties of Arithmetic Mean

Problems Based on Average

Properties Questions on Arithmetic Mean











9th Grade Math

From Properties of Arithmetic Mean to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 24, 24 04:33 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  2. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  3. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More

  4. Numerator and Denominator of a Fraction | Numerator of the Fraction

    Feb 24, 24 04:09 PM

    What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.

    Read More

  5. Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

    Feb 24, 24 10:59 AM

    List of Roman Numerals Chart
    How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…

    Read More