Simple Math Formula on Trigonometry

Simple math formula on trigonometry is given in such an order that students can easily get the formula.


Trigonometry

● Measurement of Trigonometrical Angles:

(i) The angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle is called a radian.

(ii) A radian is a constant angle. 

One radian = (2/π) rt. angle = 57°17’44.8” (approx.) 

(iii) 1 rt. angle = 90° ; 1° = 60’ ; 1‘ = 60”. 

(iv) 1 rt. angle = 100ᵍ ; 1ᵍ = 100’ ; 1‵ = 100‶.

(v) πᶜ 180° = 200ᵍ.

(vi) The circumference of a circle of radius r is 2πr where π is a constant; approximate value of π is ²²/₇; more accurate value of π is 3.14159 (approx.).

(vii) If Θ be the radian measure of an angle subtended at the centre of a circle of radius r by an arc of length s then Θ = ˢ/₀ or, s = rΘ.


● Trigonometrical Ratios of some Standard Angles:

Trigonometrical Ratios of some Standard Angles

● Trigonometrical Ratios for Associated Angles:

Trigonometrical Ratios for Associated Angles

(ii) If Θ is a positive acute angle and n is an even integer then,

(a) sin (n ∙ 90° ± Θ) = sin Θ or, (- sin Θ)

(b) cos (n ∙ 90° ± Θ) = cos Θ or, (- cos Θ)

(c) tan (n ∙ 90° ± Θ) = tan Θ or, (- tan Θ).

(iii) If Θ is a positive acute angle and n is an odd integer then,

(a) sin (n ∙ 90° ± Θ) = cos Θ or, (- cos Θ)

(b) cos (n ∙ 90° ± Θ) = sin Θ or, (- sin Θ)

(c) tan (n ∙ 90° ± Θ) = cot ф or (- cot Θ).



● Compound Angles:

(i) sin (A + B) = sin A cos B + cos A sin B.

(ii) sin ( A - B) = sin A cos B - cos A sin B.

(iii) cos (A + B) = cos A cos B + sin A sin B.

(iv) cos (A - B) = cos A cos B + sin A sin B.

(v) sin (A + B) sin (A - B) = sin² A - sin² B = cos² B - cos² A.

(vi) cos (A + B) cos (A - B) = cos² A - sin² B = cos² B - sin² A.

(vii) tan (A+ B) = (tan A + tan B)/(1 - tan A tan B).

(viii) tan (A - B) = (tan A - tan B)/(1 + tan A tan B).

(ix) cot (A + B) = (cot A cot B - 1)/(cot B + cot A).

(x) cot (A - B) = (cot A cot B + 1)/(cot B - cot A).

(xi) tan (A + B + C) = {(tan A + tan B + tan C) - (tan A tan B tan C)}/(1 - tan A tan B - tan B tan C - tan C tan A).

(xii) 2 sin A cos B = sin (A + B) + sin(A - B).

(xiii) 2 cos A sin B = sin (A + B ) - sin (A - B).

(xiv) 2 cos A cos B = cos (A + B ) + cos (A - B).

(xv) 2 sin A sin B = cos (A - B) - cos (A + B).

(xvi) sin C + sin D = 2 sin (C + D)/2 cos (C - D)/2.

(xvii) sin C - sin D = 2 cos (C + D)/2 sin (C - D)/2.

(xviii) cos C + cos D = 2 cos (C + D)/2 cos (C - D)/2.

(xix) cos C - cos D = 2 sin (C + D)/2 sin (C - D)/2.

● Multiple Angles:

(i) sin 2Θ = 2 sin Θ cos Θ.

(ii) cos 2Θ = cos² Θ - sin² Θ.

(iii) cos 2 Θ = 2 cos² Θ - 1.

(iv) cos 2Θ = 1 - 2 sin² Θ.

(v) 1 - cos2Θ = 2 cos² Θ.

(vi) 1 - cos2Θ = 2 sin² Θ.

(vii) tan² Θ = (1 - cos 2Θ)/(1 + cos 2Θ).

(viii) sin 2Θ = (2 tan Θ)/(1 + tan² Θ)

(ix) cos 2Θ = (1 - tan² Θ)/(1 + tan² Θ).

(x) tan 2Θ = (2 tan Θ)/(1 - tan² Θ).

(xi) sin 3Θ = 3 sin Θ - 4 sin³ Θ.

(xii) cos 3ф = 4 cos³ Θ - 3 cos Θ.

(xiii) tan 3Θ = (3 tan Θ - tan³ Θ)/(1 - 3 tan² Θ).

● Submultiple Angles:

(i) sin Θ = 2 sin (Θ/2) cos (Θ/2).

(ii) cos Θ = cos² (Θ/2) - sin² (Θ/2).

(iii) cos Θ = 2 cos² (Θ/2) - 1.

(iv) cos ф = 1 - 2 sin² (Θ/2).

(v) 1 + cos Θ = 2 cos² (Θ/2).

(vi) 1 - cos Θ = 2 sin² (Θ/2).

(vii) tan² (Θ/2) = (1 - cos Θ)/(1 + cos Θ).

(viii) sin Θ = [2 tan (Θ/2)]/[1 + tan² (Θ/2)].

(ix) cos Θ = [1 - tan² (Θ/2)]/[1 + tan² (Θ/2)].

(x) tan Θ = [2 tan (Θ/2)]/[1 - tan² (Θ/2)].

(xi) sin Θ = 3 sin (Θ/3) - 4 sin³ (Θ/3).

(xii) cos Θ = 4 cos³ (Θ/3) - 3 cos (Θ/2).

(xiii) (a) sin 15° = cos 75° = (√3 - 1)/(2√2).

(b) cos 15° = sin 75° = (√3 + 1)/(2√2).

(c) tan 15° = 2 - √3.

(d) sin 22 ½° = √(2 - √2).

(e) cos 22 ½° = ½ [√(2 + √2)].

(f) tan 22 ½° = √2 - 1.

(g) sin 18 ° = (√5 - 1)/4 = cos 72°.

(h) cos 36° = cos 72° = (√5 + 1)/4.

(i) cos 18° = sin 72° = ¼ [√(10 + 2√5)].

(j) sin 36° = cos 54° = ¼ [√(10 - 2√5)].



● General Solutions:

(i) (a) If sin Θ = 0 then, Θ = nπ.

(b) If sin Θ = 1 then, Θ = (4n + 1)(π/2).

(c) If sin ф = -1 then, Θ = (4n - 1)(π/2).

(d) If sin Θ = sin α then, Θ = nπ + (-1)ⁿ α.

(ii) (a) If cos Θ = 0 then, Θ = (2n + 1)(π/2).

(b) If cos Θ = 1 then, Θ = 2nπ.

(c) If cos Θ = -1 then, Θ = (2n + 1)π.

(d) If cos Θ = cos α then, Θ = 2nπ ± α.

(ii) (a) If tan Θ = 0 then, Θ = nπ.

(b) If tan Θ = tan α then, Θ = 2nπ + α where, n = 0 or any integer.



● Inverse Circular Functions:

(i) sin (sin-1 x) = x ; cos (cos-1 x) = x ; tan (tan-1 x) = x.

(ii) sin-1 (sin Θ) = Θ ; cos-1 (cos Θ) = Θ ; tan-1 (tan Θ) = Θ.

(iii) sin-1 x = cosec-1 (1/x) = cos-1 [√(1 - x2)] = sec-1 [1/√(1 - x2)]

= tan-1 [x/√(1 - x2)] = cot-1 [√(1 - x2)/x].

(iv) sin-1 x + cos-1 x = π/2 ; sec-1 x + cosec-1 x = π/2 ;

tan-1 x + cot-1 x = π/2.

(v) (a) tan-1 x + tan-1 y = tan-1 [(x + y)/(1 - xy)]

(b) tan-1 x - tan-1 y = tan-1 [(x - y)/(1 + xy)]

(vi) (a) sin-1 x + sin-1 y = sin-1 {x√(1 - y2) + y√(1 - x2)}

(b) sin-1 x - sin-1 y = sin-1 {x√(1 - y2 ) - y√(1 - x2)}

(vii) (a) cos-1 x + cos-1 y = cos-1 {xy - √(1 - x2) (1 - y2)}

(b) cos-1 x - cos-1 y = cos-1 {xy + √(1 - x2) (1 - y2)}.

(viii) 2 tan-1 x = sin-1 [2x/(1 + x2)] = cos-1 [(1 - x2)/(1 - x2)]

= tan-1 [2x/(1 - x2)].

(ix) tan-1 x + tan-1 y + tan-1 z = tan-1 [(x + y + z - xyz)/(1 - xy - yz - zx)]

(x) sin-1 x and cos-1 x are defined when -1 ≤ x ≤ 1 ; sec-1 x and cosec-1 x are defined when Ι x Ι ≥ 1 ; tan-1 x and cot-1 x are defined
when - ∞ < x < ∞.

(xi) If principal values of sin-1 x, cos-1 x and tan-1 x be α, β and γ respectively, then -π/2 ≤ α ≤ π/2, 0 ≤ β ≤ π and -π/2 ≤ γ ≤ π/2.

● Properties of Triangle:

(i) a/(sin A) = b/(sin B) = c/(sin C) = 2R.

(ii) a = b cos C + c cos B ; b = c cos A + a cos C ; c = a cos B + b cos A.

(iii) cos A = (b² + c² - a²)/2bc ; cos B = (c² + a² - b²)/2ca ;

cos C = (a² + b² - c²)/2ab

(iv) tan A = [(abc)/R] ∙[ 1/(b² + c² - a²)]

tan B = [(abc)/R] ∙ [1/(c² + a² - b²)]

tan C = [(abc)/R] ∙ [1/(a² + b² - c²)].

(v) sin (A/2) = √[(s - b) (s - c)/(bc)].

sin B/2 = √[(s - c) (s - a)/(ca)].

sin C/2 = √[(s - a) (s - b)/(ab)].

cos A/2 = √[s (s - a)/(bc)].

sin B/2 = √[s (s - b)/(ca)].

cos C/2 = √[s (s - c)/(ab)].

tan A/2 = √[(s - b) (s - c)/{s(s - c)}].

tan B/2 = √[(s - c) (s - a)/{s(s - b)}].

tan C/2 = √[(s - a) (s - b)/{s(s - c)}].

(vi) tan [(B - C)/2] = [(b - c)/(b + c)] cot (A/2).

tan [(C - A)/2] = [(c - a)/(c + a)] cot (B/2).

tan [(A - B)/2] = [(a - b)/(a + b)] cot (C/2).

(vii) ∆ = ½ [bc sin A] = ½ [ca sin B] = ½ [ab sin C].

(viii) ∆ = √{s(s - a)(s - b)(s - c)}.

(ix) R = ᵃᵇᶜ/₄₀.

(x) tan (A/2) = {(s - b)(s - c)}/∆.

tan (B/2) = {(s - c)(s - a)}/∆.

tan (C/2) = {(s - a)(s - b)}/∆

(xi) cot A/2 = {s(s - a)}/∆.

cot (B/2) = {s(s - b)}/∆.

cot (C/2) = {s(s - c)}/∆.

(xii) sin A = 2∆/bc ; sin B = 2∆/ca ; sin C = 2∆/ab

(xiii) r = ∆/s.

(xiv) r = 4R sin (A/2) sin (B/2) sin (C/2).

(xv) r = (s - a) tan (A/2) = (s - b) tan (B/2) = (s - c) tan (C/2).

(xvi) r₁ = ∆/(s - a) ; r₂ = ∆/(s - b); r₃ = ∆/(s - c) .

(xvii) r₁ = 4 R sin (A/2) cos (B/2) cos (C/2).

(xviii) r₂ = 4R sin (B/2) cos (C/2) cos (A/2).

(xix) r₃ = 4 R sin (C/2) cos (A/2) cos (B/2).

(xx) r₁ = s tan (A/2) ; r₂ = s tan (B/2) ; r₃ = s tan (C/2).

Formula




11 and 12 Grade Math

From Simple Math Formula on Trigonometry to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More