Subscribe to our YouTube channel for the latest videos, updates, and tips.


Simple Math Formula on Trigonometry

Simple math formula on trigonometry is given in such an order that students can easily get the formula.


Trigonometry

● Measurement of Trigonometrical Angles:

(i) The angle subtended at the centre of a circle by an arc whose length is equal to the radius of the circle is called a radian.

(ii) A radian is a constant angle. 

One radian = (2/π) rt. angle = 57°17’44.8” (approx.) 

(iii) 1 rt. angle = 90° ; 1° = 60’ ; 1‘ = 60”. 

(iv) 1 rt. angle = 100ᵍ ; 1ᵍ = 100’ ; 1‵ = 100‶.

(v) πᶜ 180° = 200ᵍ.

(vi) The circumference of a circle of radius r is 2πr where π is a constant; approximate value of π is ²²/₇; more accurate value of π is 3.14159 (approx.).

(vii) If Θ be the radian measure of an angle subtended at the centre of a circle of radius r by an arc of length s then Θ = ˢ/₀ or, s = rΘ.


● Trigonometrical Ratios of some Standard Angles:

Trigonometrical Ratios of some Standard Angles

● Trigonometrical Ratios for Associated Angles:

Trigonometrical Ratios for Associated Angles

(ii) If Θ is a positive acute angle and n is an even integer then,

(a) sin (n ∙ 90° ± Θ) = sin Θ or, (- sin Θ)

(b) cos (n ∙ 90° ± Θ) = cos Θ or, (- cos Θ)

(c) tan (n ∙ 90° ± Θ) = tan Θ or, (- tan Θ).

(iii) If Θ is a positive acute angle and n is an odd integer then,

(a) sin (n ∙ 90° ± Θ) = cos Θ or, (- cos Θ)

(b) cos (n ∙ 90° ± Θ) = sin Θ or, (- sin Θ)

(c) tan (n ∙ 90° ± Θ) = cot ф or (- cot Θ).



● Compound Angles:

(i) sin (A + B) = sin A cos B + cos A sin B.

(ii) sin ( A - B) = sin A cos B - cos A sin B.

(iii) cos (A + B) = cos A cos B + sin A sin B.

(iv) cos (A - B) = cos A cos B + sin A sin B.

(v) sin (A + B) sin (A - B) = sin² A - sin² B = cos² B - cos² A.

(vi) cos (A + B) cos (A - B) = cos² A - sin² B = cos² B - sin² A.

(vii) tan (A+ B) = (tan A + tan B)/(1 - tan A tan B).

(viii) tan (A - B) = (tan A - tan B)/(1 + tan A tan B).

(ix) cot (A + B) = (cot A cot B - 1)/(cot B + cot A).

(x) cot (A - B) = (cot A cot B + 1)/(cot B - cot A).

(xi) tan (A + B + C) = {(tan A + tan B + tan C) - (tan A tan B tan C)}/(1 - tan A tan B - tan B tan C - tan C tan A).

(xii) 2 sin A cos B = sin (A + B) + sin(A - B).

(xiii) 2 cos A sin B = sin (A + B ) - sin (A - B).

(xiv) 2 cos A cos B = cos (A + B ) + cos (A - B).

(xv) 2 sin A sin B = cos (A - B) - cos (A + B).

(xvi) sin C + sin D = 2 sin (C + D)/2 cos (C - D)/2.

(xvii) sin C - sin D = 2 cos (C + D)/2 sin (C - D)/2.

(xviii) cos C + cos D = 2 cos (C + D)/2 cos (C - D)/2.

(xix) cos C - cos D = 2 sin (C + D)/2 sin (C - D)/2.

● Multiple Angles:

(i) sin 2Θ = 2 sin Θ cos Θ.

(ii) cos 2Θ = cos² Θ - sin² Θ.

(iii) cos 2 Θ = 2 cos² Θ - 1.

(iv) cos 2Θ = 1 - 2 sin² Θ.

(v) 1 - cos2Θ = 2 cos² Θ.

(vi) 1 - cos2Θ = 2 sin² Θ.

(vii) tan² Θ = (1 - cos 2Θ)/(1 + cos 2Θ).

(viii) sin 2Θ = (2 tan Θ)/(1 + tan² Θ)

(ix) cos 2Θ = (1 - tan² Θ)/(1 + tan² Θ).

(x) tan 2Θ = (2 tan Θ)/(1 - tan² Θ).

(xi) sin 3Θ = 3 sin Θ - 4 sin³ Θ.

(xii) cos 3ф = 4 cos³ Θ - 3 cos Θ.

(xiii) tan 3Θ = (3 tan Θ - tan³ Θ)/(1 - 3 tan² Θ).

● Submultiple Angles:

(i) sin Θ = 2 sin (Θ/2) cos (Θ/2).

(ii) cos Θ = cos² (Θ/2) - sin² (Θ/2).

(iii) cos Θ = 2 cos² (Θ/2) - 1.

(iv) cos ф = 1 - 2 sin² (Θ/2).

(v) 1 + cos Θ = 2 cos² (Θ/2).

(vi) 1 - cos Θ = 2 sin² (Θ/2).

(vii) tan² (Θ/2) = (1 - cos Θ)/(1 + cos Θ).

(viii) sin Θ = [2 tan (Θ/2)]/[1 + tan² (Θ/2)].

(ix) cos Θ = [1 - tan² (Θ/2)]/[1 + tan² (Θ/2)].

(x) tan Θ = [2 tan (Θ/2)]/[1 - tan² (Θ/2)].

(xi) sin Θ = 3 sin (Θ/3) - 4 sin³ (Θ/3).

(xii) cos Θ = 4 cos³ (Θ/3) - 3 cos (Θ/2).

(xiii) (a) sin 15° = cos 75° = (√3 - 1)/(2√2).

(b) cos 15° = sin 75° = (√3 + 1)/(2√2).

(c) tan 15° = 2 - √3.

(d) sin 22 ½° = √(2 - √2).

(e) cos 22 ½° = ½ [√(2 + √2)].

(f) tan 22 ½° = √2 - 1.

(g) sin 18 ° = (√5 - 1)/4 = cos 72°.

(h) cos 36° = cos 72° = (√5 + 1)/4.

(i) cos 18° = sin 72° = ¼ [√(10 + 2√5)].

(j) sin 36° = cos 54° = ¼ [√(10 - 2√5)].



● General Solutions:

(i) (a) If sin Θ = 0 then, Θ = nπ.

(b) If sin Θ = 1 then, Θ = (4n + 1)(π/2).

(c) If sin ф = -1 then, Θ = (4n - 1)(π/2).

(d) If sin Θ = sin α then, Θ = nπ + (-1)ⁿ α.

(ii) (a) If cos Θ = 0 then, Θ = (2n + 1)(π/2).

(b) If cos Θ = 1 then, Θ = 2nπ.

(c) If cos Θ = -1 then, Θ = (2n + 1)π.

(d) If cos Θ = cos α then, Θ = 2nπ ± α.

(ii) (a) If tan Θ = 0 then, Θ = nπ.

(b) If tan Θ = tan α then, Θ = 2nπ + α where, n = 0 or any integer.



● Inverse Circular Functions:

(i) sin (sin-1 x) = x ; cos (cos-1 x) = x ; tan (tan-1 x) = x.

(ii) sin-1 (sin Θ) = Θ ; cos-1 (cos Θ) = Θ ; tan-1 (tan Θ) = Θ.

(iii) sin-1 x = cosec-1 (1/x) = cos-1 [√(1 - x2)] = sec-1 [1/√(1 - x2)]

= tan-1 [x/√(1 - x2)] = cot-1 [√(1 - x2)/x].

(iv) sin-1 x + cos-1 x = π/2 ; sec-1 x + cosec-1 x = π/2 ;

tan-1 x + cot-1 x = π/2.

(v) (a) tan-1 x + tan-1 y = tan-1 [(x + y)/(1 - xy)]

(b) tan-1 x - tan-1 y = tan-1 [(x - y)/(1 + xy)]

(vi) (a) sin-1 x + sin-1 y = sin-1 {x√(1 - y2) + y√(1 - x2)}

(b) sin-1 x - sin-1 y = sin-1 {x√(1 - y2 ) - y√(1 - x2)}

(vii) (a) cos-1 x + cos-1 y = cos-1 {xy - √(1 - x2) (1 - y2)}

(b) cos-1 x - cos-1 y = cos-1 {xy + √(1 - x2) (1 - y2)}.

(viii) 2 tan-1 x = sin-1 [2x/(1 + x2)] = cos-1 [(1 - x2)/(1 - x2)]

= tan-1 [2x/(1 - x2)].

(ix) tan-1 x + tan-1 y + tan-1 z = tan-1 [(x + y + z - xyz)/(1 - xy - yz - zx)]

(x) sin-1 x and cos-1 x are defined when -1 ≤ x ≤ 1 ; sec-1 x and cosec-1 x are defined when Ι x Ι ≥ 1 ; tan-1 x and cot-1 x are defined
when - ∞ < x < ∞.

(xi) If principal values of sin-1 x, cos-1 x and tan-1 x be α, β and γ respectively, then -π/2 ≤ α ≤ π/2, 0 ≤ β ≤ π and -π/2 ≤ γ ≤ π/2.

● Properties of Triangle:

(i) a/(sin A) = b/(sin B) = c/(sin C) = 2R.

(ii) a = b cos C + c cos B ; b = c cos A + a cos C ; c = a cos B + b cos A.

(iii) cos A = (b² + c² - a²)/2bc ; cos B = (c² + a² - b²)/2ca ;

cos C = (a² + b² - c²)/2ab

(iv) tan A = [(abc)/R] ∙[ 1/(b² + c² - a²)]

tan B = [(abc)/R] ∙ [1/(c² + a² - b²)]

tan C = [(abc)/R] ∙ [1/(a² + b² - c²)].

(v) sin (A/2) = √[(s - b) (s - c)/(bc)].

sin B/2 = √[(s - c) (s - a)/(ca)].

sin C/2 = √[(s - a) (s - b)/(ab)].

cos A/2 = √[s (s - a)/(bc)].

sin B/2 = √[s (s - b)/(ca)].

cos C/2 = √[s (s - c)/(ab)].

tan A/2 = √[(s - b) (s - c)/{s(s - c)}].

tan B/2 = √[(s - c) (s - a)/{s(s - b)}].

tan C/2 = √[(s - a) (s - b)/{s(s - c)}].

(vi) tan [(B - C)/2] = [(b - c)/(b + c)] cot (A/2).

tan [(C - A)/2] = [(c - a)/(c + a)] cot (B/2).

tan [(A - B)/2] = [(a - b)/(a + b)] cot (C/2).

(vii) ∆ = ½ [bc sin A] = ½ [ca sin B] = ½ [ab sin C].

(viii) ∆ = √{s(s - a)(s - b)(s - c)}.

(ix) R = ᵃᵇᶜ/₄₀.

(x) tan (A/2) = {(s - b)(s - c)}/∆.

tan (B/2) = {(s - c)(s - a)}/∆.

tan (C/2) = {(s - a)(s - b)}/∆

(xi) cot A/2 = {s(s - a)}/∆.

cot (B/2) = {s(s - b)}/∆.

cot (C/2) = {s(s - c)}/∆.

(xii) sin A = 2∆/bc ; sin B = 2∆/ca ; sin C = 2∆/ab

(xiii) r = ∆/s.

(xiv) r = 4R sin (A/2) sin (B/2) sin (C/2).

(xv) r = (s - a) tan (A/2) = (s - b) tan (B/2) = (s - c) tan (C/2).

(xvi) r₁ = ∆/(s - a) ; r₂ = ∆/(s - b); r₃ = ∆/(s - c) .

(xvii) r₁ = 4 R sin (A/2) cos (B/2) cos (C/2).

(xviii) r₂ = 4R sin (B/2) cos (C/2) cos (A/2).

(xix) r₃ = 4 R sin (C/2) cos (A/2) cos (B/2).

(xx) r₁ = s tan (A/2) ; r₂ = s tan (B/2) ; r₃ = s tan (C/2).

Formula




11 and 12 Grade Math

From Simple Math Formula on Trigonometry to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More