Linear Equation

What is a linear equation?

An equation which involves only one variable whose highest power is 1 is known as a linear equation in that variable.

For example:

(a) x + 4 = 19 

(b) y - 7 = 11 

(c) x/2 - x/3 = 9 

(d) 2x - 5 = x + 7

(e) x + 13 = 27 

(f) y - 3 = 9 

(g) 11x + 5 = x + 7

Each one of these equations is a linear equation. 


The sign of equality divides the equation into two sides. Left hand side or L.H.S. and Right hand side or R.H.S


Solution of linear equation or Root of linear equation: The value of the variable which makes left hand side equal to right hand side in the given equation is called the solution or the root of the equation.

For example:

1. x + 1 = 4

Here, L.H.S. is x + 1 and R.H.S. is 4

If we put x = 3, then L.H.S. is 3 + 1 which is equal to R.H.S.

Thus, the solution of the given linear equation is x = 3


2. 5x - 2 = 3x - 4 is a linear equation.

If we put x = -1, then L.H.S. is 5 × -1 -2 and R.H.S. is 3 × -1 -4

                                            = -5 -2                           = -3 -4

                                            = -7                               = -7

So, L.H.S. = R.H.S.

Therefore, x = -1 is the solution for the equation 5x - 2 = 3x - 4

How to solve linear equation in one variable?

Rules for solving a linear equation in one variable: 

The equation remains unchanged if – 

(a)The same number is added to both sides of the equation.

For example: 

1. x - 4 = 7 

⇒ x - 4 + 4 = 7 + 4 (Add 4 to both sides) 

⇒ x = 11 


2. x - 2 = 10

⇒ x - 2 + 2 = 10 + 2 (Add 2 to both sides)

⇒ x = 12 



(b) The same number is subtracted from both sides of the equation.

For example:

1. x + 5 = 9

⇒ x + 5 - 5 = 9 - 5 (Subtract 5 from both sides)

⇒ x + 0 = 4

⇒ x = 4


2. x + 1/2 = 3

x + 1/2 - 1/2 = 3 - 1/2 (Subtract 1/2 from both sides)

⇒ x = 3 - 1/2

⇒ x = (6 - 1)/2

⇒ x = 5/2



(c) The same number is multiplied to both sides of the equation.

For example:

1. x/2 = 5

⇒ x/2 × 2 = 5 × 2 (Multiply 2 to both the sides)

⇒ x = 10


2. x/5 = 15

⇒ x/5 × 5 = 15/5 (Multiply 5 to both the sides)

⇒ x = 3



(d) The same non-zero number divides both sides of the equation.

For example:

1. 0.2x = 0.24

⇒ 0.2x/0.2 = 0.24/0.2 (Divide both sides by 0.2)

⇒ x = 0.12


2. 5x = 10

⇒ 5x/5 = 10/5 (Divide both sides by 2)

⇒ x = 2

What is transposition? Explain the methods of transposition.

Any term of an equation may be shifted to the other side with a change in its sign without affecting the equality. This process is called transposition.

So, by transposing a term —

We simply change its sign and carry it to the other side of the equation.

‘+‘ sign of the term changes to ‘—‘ sign to the other side and vice-versa.

‘×’ sign of the factor changes to ‘÷‘ sign to the other side and vice-versa.

Now, simplify L.H.S. such that each side contains just one term.

Finally, simplify the equation to get the value of the variable.

For example:

10x - 7 = 8x + 13

⇒ 10x - 8x = 13 + 7

⇒ 2x = 20

⇒ 2x/2 = 20/2

⇒ x = 10

Note:

    + changes to –

    – changes to +

    × changes to ÷

    ÷ changes to ×

Therefore, from the above we came to know that without changing the equality, this process of changing sign is called transposition.


 Equations

What is an Equation?

What is a Linear Equation?

How to Solve Linear Equations?

Solving Linear Equations

Problems on Linear Equations in One Variable

Word Problems on Linear Equations in One Variable

Practice Test on Linear Equations

Practice Test on Word Problems on Linear Equations


 Equations - Worksheets

Worksheet on Linear Equations

Worksheet on Word Problems on Linear Equation









7th Grade Math Problems 

8th Grade Math Practice 

From Linear Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Jan 23, 25 02:43 PM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  2. Long Division Method with Regrouping and without Remainder | Division

    Jan 23, 25 02:25 PM

    Dividing a 2-Digits Number by 1-Digit Number With Regrouping
    We will discuss here how to solve step-by-step the long division method with regrouping and without remainder. Consider the following examples: 468 ÷ 3

    Read More

  3. Long Division Method Without Regrouping and Without Remainder | Divide

    Jan 23, 25 10:44 AM

    Dividing a 2-Digits Number by 1-Digit Number
    We will discuss here how to solve step-by-step the long division method without regrouping and without remainder. Consider the following examples: 1. 848 ÷ 4

    Read More

  4. Relationship between Multiplication and Division |Inverse Relationship

    Jan 23, 25 02:00 AM

    We know that multiplication is repeated addition and division is repeated subtraction. This means that multiplication and division are inverse operation. Let us understand this with the following exam…

    Read More

  5. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 02:23 PM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More