How to Solve Linear Equations?

How to solve linear equations?

Step-by-step instructions are given in the examples of solving linear equations. We will learn how to solve one variable linear equations using addition, subtraction, multiplication and division.


Examples on solving linear equations: 

1. Solve the equation 2x - 1 = 14 - x and represent the solution graphically. 

Solution: 

2x - 1 = 14 - x 

⇒ 2x + x = 14 + 1

(Transfer -x from right hand side to the left hand side, then negative x changes to positive x. Similarly again transfer -1 from left hand side to the right hand side, then negative 1 change to positive 1.


Therefore, we arranged the variables in one side and the numbers in the other side.)

⇒ 3x = 15

⇒ 3x/3 = 15/3 (Divide both sides by 3)

⇒ x = 5

Therefore, x = 5 is the solution of the given equation.

The solution may be represented graphically on the number line by graphing linear equations.

graphing linear equations



2. Solve the equation 10x = 5x + 1/2 and represent the solution graphically.

Solution:

10x = 5x + 1/2

⇒ 10x – 5x = 1/2

(Transfer 5x from right hand side to the left hand side, then positive 5x changes to negative 5x).

⇒ 5x = 1/2

⇒ 5x/5 = 1/2 ÷ 5 (Divide both sides by 5)

⇒ x = 1/2 × 1/5

⇒ x = 1/10

Therefore, x = 1/10 is the solution of the given equation.


The solution may be represented graphically on the number line.

solution graphically



3. Solve the equation 6(3x + 2) + 5(7x - 6) - 12x = 5(6x - 1) + 6(x - 3) and verify your answer

Solution:

6(3x + 2) + 5(7x - 6) - 12x = 5(6x - 1) + 6(x - 3)

⇒ 18x + 12 + 35x - 30 - 12x = 30x - 5 + 6x - 18

⇒ 18x + 35x - 12x + 12 - 30 = 30x + 6x - 5 - 18

⇒ 41x - 18 = 36x - 23

⇒ 41x - 36x = - 23 + 18

⇒ 5x = -5

⇒ x = -5/5

⇒ x = -1

Therefore, x = -1 is the solution of the given equation.

Now we will verify both the sides of the equation,

6(3x + 2) + 5(7x - 6) - 12x = 5(6x - 1) + 6(x - 3) are equal to each other;

Verification:

L.H.S. = 6(3x + 2) + 5(7x - 6) - 12x

Plug the value of x = -1 we get;

= 6[3 × (-1) + 2] + 5 [7 × (-1) - 6] - 12 × (-1)

= 6[-3 + 2] + 5[-7 - 6] + 12

= 6 × (-1) + 5 (-13) + 12

= - 6 - 65 + 12

= -71 + 12

= -59

Verification:

R.H.S. = 5(6x - 1) + 6(x - 3)

Plug the value of x = - 1, we get

= 5[6 × (-1) - 1] + 6[(-1) - 3]

= 5(-6 - 1) + 6(-1 -3)

= 5 × (-7) + 6 × (-4)

= - 35 - 24

= - 59

Since, L.H.S. = R.H.S. hence verified.

What is cross multiplication?

The process of multiplying the numerator on the left hand side with the denominator on the right hand side and multiplying the denominator on left hand side with the numerator on right hand side is called cross multiplication.

And then equating both the products we get the linear equation.

On solving it we get the value of variable for which L.H.S. = R.H.S. Then, it is an equation of the form.

(mx + n)/(ox + p) = q/r where m, n, o, p, q, r are numbers and ox + p ≠ 0
⇒ r(mx + n) = q(ox + p)

It’s an equation in one variable x but it is not a linear equation as L.H.S. is not a linear polynomial.

We convert this into linear equation by the method of cross multiplication and further solve it step-by-step.


Examples on cross multiplication while solving linear equations:

1. (3x + 4)/5 = (2x - 3)/3

Solution:

(3x + 4)/5 = (2x - 3)/3

On cross multiplication, we get;

⇒ 3(3x + 4) = 5(2x - 3)

⇒ 9x + 12 = 10x - 15

⇒ 9x - 10x = -15 - 12

⇒ -x = -27

⇒ x = 27

Verification:

L.H.S. = (3x + 4)/5

Plug x = 27, we get;

(3 × 27 + 4)/5

= 81 + 4/5

= 85/5

= 17

Verification:

R.H.S. = (2x - 3)/3

Plug x = 27, we get;

(2 × 27 - 3)/3

= 54 - 3/3

= 51/3

= 17

Since, L.H.S. = R.H.S. hence verified.


2. Solve 0.8 - 0.28x = 1.16 - 0.6x

Solution:

0.8 - 0.28x = 1.16 - 0.6x

⇒ 0.6x - 0.28x = 1.16 - 0.8

⇒ 0.32x = 0.36

⇒ x = 0.36/0.32

⇒ x = 36/32

⇒ x = 9/8

Therefore, 9/8 is the required solution.

Verification:

L.H.S. = 0.8 - 0.28x

Plug x = 9/8, we get;

= 0.8 - 0.28 × 9/8

= 8/10 - 2̶8̶/100 × 9/8̶

= 8/10 - 63/200

= (160 - 63)/200

= 97/200

Verification:

R.H.S. = 1.16 - 0.6x

= 1.16 - 0.6 × 9/8

= 116/100 - 6̶/10 × 9/8̶

= 116/100 - 27/40

= (232 - 135)/200

= 97/200

Since, L.H.S. = R.H.S. hence verified.


 Equations

What is an Equation?

What is a Linear Equation?

How to Solve Linear Equations?

Solving Linear Equations

Problems on Linear Equations in One Variable

Word Problems on Linear Equations in One Variable

Practice Test on Linear Equations

Practice Test on Word Problems on Linear Equations


 Equations - Worksheets

Worksheet on Linear Equations

Worksheet on Word Problems on Linear Equation









7th Grade Math Problems

8th Grade Math Practice 

From How to Solve Linear Equations? to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Money | Conversion of Money from Rupees to Paisa

    Dec 03, 24 01:29 AM

    Worksheet on Money
    Practice the questions given in the worksheet on money. This sheet provides different types of questions where students need to express the amount of money in short form and long form

    Read More

  2. 2nd Grade Money Worksheet | Conversion of Money | Word Problems

    Dec 03, 24 01:19 AM

    Match the following Money
    In 2nd grade money worksheet we will solve the problems on writing amount in words and figures, conversion of money and word problems on money. 1. Write T for true and F for false. (i) Rs. is written…

    Read More

  3. Subtraction of Money | Subtraction with Conversion, without Conversion

    Dec 02, 24 01:47 PM

    Subtraction of Money
    In subtraction of money we will learn how to subtract the amounts of money involving rupees and paise to find the difference. We carryout subtraction with money the same way as in decimal numbers. Whi…

    Read More

  4. Word Problems on Addition of Money |Money Word Problems|Money Addition

    Dec 02, 24 01:26 PM

    Word Problems on Addition of Money
    Let us consider some of the word problems on addition of money. We have solved the problems in both the methods i.e., with conversion into paise and without conversion into paise. Worked-out examples

    Read More

  5. Addition of Money | Add The Amounts of Money Involving Rupees & Paisa

    Nov 29, 24 01:26 AM

    3rd Grade Addition of Money
    In addition of money we will learn how to add the amounts of money involving rupees and paisa together. We carryout with money the same way as in decimal numbers. While adding we need to follow that t…

    Read More