Graph of y = sin x

y = sin x is periodic function. The period of y = sin x is 2π. Therefore, we will draw the graph of y = sin x in the interval [-π, 2π].

For this, we need to take the different values of x at intervals of 10°. Then by using the table of natural sines we will get the corresponding values of sin x. Take the values of sin x correct to two place of decimal. The values of sin x for the different values of x in the interval [-π, 2π] are given in the following table.

We draw two mutually perpendicular straight lines XOX’ and YOY’. XOX’ is called the x-axis which is a horizontal line. YOY’ is called the y-axis which is a vertical line. Point O is called the origin.

Now represent angle (x) along x-axis and y (or sin x) along y-axis.

Along the x-axis: Take 1 small square = 10°.

Along the y-axis: Take 10 small squares = 1 unity.

Now plot the above tabulated values of x and y on the co-ordinate graph paper. Then join the points by free hand. The continuous curve obtained by free hand joining is the required graph of y = sin x.

Steps to draw the graph of y = c sin ax.

Steps I: Obtain the values of a and c.

Step II: Draw the graph of y = sin x and mark the points where y = sin x crosses x-axis.

Step III: Divide the x-coordinate of the points where y = sin x crosses x-axis by a and mark maximum and minimum values of y = c sin ax as c and –c on y-axis.

The graph obtained is the required graph of y = c sin ax.


Properties of y = sin x:

(i) The graph of the function y = sin x is continuous and extends on either side in symmetrical wave form.

(ii) Since the graph intersects the x-axis at the origin and at points where x is an even multiple of 90°, hence sin x is zero at x = nπ where n = 0, ±1, ±2, ±3, ±4, ……………... .

(iii) The ordinate of any point on the graph always lies between 1 and - 1 i.e., - 1 ≤ y ≤ 1 or ,-1 ≤ sin x ≤ 1  hence, the maximum value of sin x is 1 and its minimum value is - 1 and these values occur alternately at \(\frac{π}{2}\), \(\frac{3π}{2}\), \(\frac{5π}{2}\),………  i. e., at x = (2n + 1)\(\frac{π}{2}\), where n = 0, ±1, ±2, ±3, ±4, ……………...

(iv) Since the function y= sin x is periodic of period 2π, hence the portion of the graph between 0 to 2π is repeated over and over again on either side.


Solved example to sketch the graph of y = sin x:

Sketch the graph of y = 2 sin 3x.

Solution:

To obtain the graph of y = 2 sin 3x we first draw the graph y = sin x in the interval [0, 2n] and then divide the x-coordinates of the points where it crosses x-axis by 3. The maximum and minimum values are 2 and -2 respectively.

● Graphs of Trigonometrical Functions





11 and 12 Grade Math

From Graph of y = sin x to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

    Mar 02, 24 05:31 PM

    Fractions
    The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

    Read More

  2. Subtraction of Fractions having the Same Denominator | Like Fractions

    Mar 02, 24 04:36 PM

    Subtraction of Fractions having the Same Denominator
    To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numera…

    Read More

  3. Addition of Like Fractions | Examples | Worksheet | Answer | Fractions

    Mar 02, 24 03:32 PM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  4. Comparison of Unlike Fractions | Compare Unlike Fractions | Examples

    Mar 01, 24 01:42 PM

    Comparison of Unlike Fractions
    In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a nu…

    Read More

  5. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 29, 24 05:12 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More