# Graph of y = sec x

y = sec x is periodic function. The period of y = sec x is 2π. Therefore, we will draw the graph of y = sec x in the interval [-π, 2π].

For this, we need to take the different values of x at intervals of 10°. Then by using the table of natural cosines we will get the corresponding values of cos x. Take the values of cos x correct to two place of decimal. The values of cos x for the different values of x in the interval [-π, 2π] are given in the following table.

We draw two mutually perpendicular straight lines XOX’ and YOY’. XOX’ is called the x-axis which is a horizontal line. YOY’ is called the y-axis which is a vertical line. Point O is called the origin.

Now represent angle (x) along x-axis and y (or sec x) along y-axis.

Along the x-axis: Take 1 small square = 10°.

Along the y-axis: Take 10 small squares = 1 unity.

Now plot the above tabulated values of x and y on the co-ordinate graph paper. Then join the points by free hand. The continuous curve obtained by free hand joining is the required graph of y = sec x.

Properties of y = sec x:

(i) The graph of the function y = cos x is not a continuous graph, but consists of infinite number of separate branches, the points of discontinuities are at x = (2n + 1)$$\frac{π}{2}$$, where n = 0, ±1, ±2, ±3, ±4, ……………... .

The straight lines parallel to y-axis at these points of discontinuities are asymptotes to the different branches of the curve.

(ii) Comparing cosecant-graph and secant-graph we see that cosecant-graph coincides with secant-graph if the former is shifted to the left through 90° this is due to the fact that cos (90° + x) = sec x.

(iii) No part of the graph lies between the lines = 1 and y = -1, since |sec x| ≥ 1.

(iv) The portion of the graph between 0 to 2π is repeated over and over again on either side, since the function y = sec x is periodic of period 2π.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

Apr 20, 24 05:39 PM

There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

2. ### What are Parallel Lines in Geometry? | Two Parallel Lines | Examples

Apr 20, 24 05:29 PM

In parallel lines when two lines do not intersect each other at any point even if they are extended to infinity. What are parallel lines in geometry? Two lines which do not intersect each other

3. ### Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

Apr 19, 24 04:01 PM

In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

4. ### Fundamental Geometrical Concepts | Point | Line | Properties of Lines

Apr 19, 24 01:50 PM

The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.