Fraction as Decimal

We will discuss how to express fraction as decimal.


Fractions with denominator 10:

Fractional Number       Fraction           Decimal

        9 tenths                    \(\frac{9}{10}\)                      0.9

        6 tenths                    \(\frac{6}{10}\)                      0.6

        3 tenths                    \(\frac{3}{10}\)                      0.3

        7 tenths                    \(\frac{7}{10}\)                      0.7

      27 tenths                    \(\frac{27}{10}\)                      2.7

There

is

only 1 zero in the

denominator, hence

1

decimal place.


Fractions with denominator 100:

Fractional Number       Fraction           Decimal

     3 hundredths               \(\frac{3}{100}\)                   0.03

   28 hundredths                \(\frac{28}{100}\)                  0.28

 368 hundredths               \(\frac{368}{100}\)                   3.68

4192 hundredths              \(\frac{4192}{100}\)                 41.92

There

are

2 zeros in the

denominator, hence

2

decimal places.


Fractions with denominator 1000:

Fractional Number       Fraction           Decimal

      9 thousandths             \(\frac{9}{1000}\)                0.009

    19 thousandths             \(\frac{19}{1000}\)                0.019

  319 thousandths             \(\frac{319}{1000}\)                0.319

3812 thousandths             \(\frac{3812}{1000}\)                3.812

There

are

3 zeros in the

denominator, hence

3

decimal places.


To convert fractions to decimals, remember the following steps.

Step I: Write the mixed fraction as an improper fraction.

Step II: Then write the numerator.

Step III: Count the number of zeroes in the denominator. The number of decimal places is equal to the number of zeroes in the denominator.

Step IV: Put the decimal point counting the number of digits from the right equal to the number of zeroes in the denominator.

Step V: If the number of digits in the numerator is less than the number of zeroes in the denominator, put the required number of zeroes between the decimal point and the number so that the decimal place equals the number of zeroes.


Let us consider some of the following examples on expressing a fraction as a decimal.

1. Convert \(\frac{4}{5}\) into a decimal.

Solution:

\(\frac{4}{5}\) can be written as \(\frac{4 × 2}{5 × 2}\)

                          = \(\frac{8}{10}\)

                          = 0.8

We multiply the numerator and the denominator by 2 to make the denominator 10.


2. Convert \(\frac{3}{25}\) into a decimal.

Solution:

\(\frac{3}{25}\) can be written as \(\frac{3 × 4}{25 × 4}\)

                          = \(\frac{12}{100}\)

                          = 0.12

We multiply the numerator and the denominator by 4 to make the denominator 100.


3. Convert 2\(\frac{3}{5}\) into a decimal.

Solution:

2\(\frac{3}{5}\) can be written as 2 + \(\frac{3}{5}\)

                          = 2 + \(\frac{3 × 2}{5 × 2}\)

                          = 2 + \(\frac{6}{10}\)

                          = 2 + 0.6

                          = 2.6


We multiply the numerator and the denominator by 2 to make the denominator 10.


4. Convert 14\(\frac{57}{250}\) into a decimal.

Solution:

14\(\frac{57}{250}\) can be written as 14 + \(\frac{57}{250}\)

                               = 14 + \(\frac{57 × 4}{250 × 4}\)

                               = 14 + \(\frac{228}{1000}\)

                               = 14 + 0.228

                               = 14.228


We multiply the numerator and the denominator by 4 to make the denominator 1000.


Questions and Answers on Fraction as Decimal:

I. Convert the following fractions to decimals:

(i) \(\frac{19}{100}\)      

(ii) \(\frac{3}{100}\)        

(iii) \(\frac{36}{10}\)       

(iv) \(\frac{145}{100}\)  

(v) \(\frac{27}{1000}\)   

(vi) \(\frac{3124}{1000}\)             

(vii) \(\frac{956}{10}\)   

(viii) \(\frac{204}{100}\)

(ix) 3\(\frac{26}{100}\)  

(x) 18\(\frac{43}{100}\)




4th Grade Math Activities

From Fraction as Decimal to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 18, 24 02:59 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More

  2. Numbers | Notation | Numeration | Numeral | Estimation | Examples

    May 12, 24 06:28 PM

    Numbers are used for calculating and counting. These counting numbers 1, 2, 3, 4, 5, .......... are called natural numbers. In order to describe the number of elements in a collection with no objects

    Read More

  3. Face Value and Place Value|Difference Between Place Value & Face Value

    May 12, 24 06:23 PM

    Face Value and Place Value
    What is the difference between face value and place value of digits? Before we proceed to face value and place value let us recall the expanded form of a number. The face value of a digit is the digit…

    Read More

  4. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    May 12, 24 06:09 PM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  5. Worksheet on Bar Graphs | Bar Graphs or Column Graphs | Graphing Bar

    May 12, 24 04:59 PM

    Bar Graph Worksheet
    In math worksheet on bar graphs students can practice the questions on how to make and read bar graphs or column graphs. Test your knowledge by practicing this graphing worksheet where we will

    Read More