Fraction as Decimal

We will discuss how to express fraction as decimal.

Fractions with denominator 10:

 Fractional Number       Fraction           Decimal        9 tenths                    $$\frac{9}{10}$$                      0.9         6 tenths                    $$\frac{6}{10}$$                      0.6         3 tenths                    $$\frac{3}{10}$$                      0.3         7 tenths                    $$\frac{7}{10}$$                      0.7       27 tenths                    $$\frac{27}{10}$$                      2.7 Thereisonly 1 zero in the denominator, hence 1 decimal place.

Fractions with denominator 100:

 Fractional Number       Fraction           Decimal     3 hundredths               $$\frac{3}{100}$$                   0.03   28 hundredths                $$\frac{28}{100}$$                  0.28  368 hundredths               $$\frac{368}{100}$$                   3.68 4192 hundredths              $$\frac{4192}{100}$$                 41.92 Thereare2 zeros in the denominator, hence 2 decimal places.

Fractions with denominator 1000:

 Fractional Number       Fraction           Decimal      9 thousandths             $$\frac{9}{1000}$$                0.009    19 thousandths             $$\frac{19}{1000}$$                0.019   319 thousandths             $$\frac{319}{1000}$$                0.319 3812 thousandths             $$\frac{3812}{1000}$$                3.812 Thereare3 zeros in the denominator, hence 3 decimal places.

To convert fractions to decimals, remember the following steps.

Step I: Write the mixed fraction as an improper fraction.

Step II: Then write the numerator.

Step III: Count the number of zeroes in the denominator. The number of decimal places is equal to the number of zeroes in the denominator.

Step IV: Put the decimal point counting the number of digits from the right equal to the number of zeroes in the denominator.

Step V: If the number of digits in the numerator is less than the number of zeroes in the denominator, put the required number of zeroes between the decimal point and the number so that the decimal place equals the number of zeroes.

Let us consider some of the following examples on expressing a fraction as a decimal.

1. Convert $$\frac{4}{5}$$ into a decimal.

Solution:

 $$\frac{4}{5}$$ can be written as $$\frac{4 × 2}{5 × 2}$$                           = $$\frac{8}{10}$$                           = 0.8 We multiply the numerator and the denominator by 2 to make the denominator 10.

2. Convert $$\frac{3}{25}$$ into a decimal.

Solution:

 $$\frac{3}{25}$$ can be written as $$\frac{3 × 4}{25 × 4}$$                           = $$\frac{12}{100}$$                           = 0.12 We multiply the numerator and the denominator by 4 to make the denominator 100.

3. Convert 2$$\frac{3}{5}$$ into a decimal.

Solution:

 2$$\frac{3}{5}$$ can be written as 2 + $$\frac{3}{5}$$                           = 2 + $$\frac{3 × 2}{5 × 2}$$                           = 2 + $$\frac{6}{10}$$                           = 2 + 0.6                           = 2.6 We multiply the numerator and the denominator by 2 to make the denominator 10.

4. Convert 14$$\frac{57}{250}$$ into a decimal.

Solution:

 14$$\frac{57}{250}$$ can be written as 14 + $$\frac{57}{250}$$                                = 14 + $$\frac{57 × 4}{250 × 4}$$                                = 14 + $$\frac{228}{1000}$$                                = 14 + 0.228                                = 14.228 We multiply the numerator and the denominator by 4 to make the denominator 1000.

Questions and Answers on Fraction as Decimal:

I. Convert the following fractions to decimals:

(i) $$\frac{19}{100}$$

(ii) $$\frac{3}{100}$$

(iii) $$\frac{36}{10}$$

(iv) $$\frac{145}{100}$$

(v) $$\frac{27}{1000}$$

(vi) $$\frac{3124}{1000}$$

(vii) $$\frac{956}{10}$$

(viii) $$\frac{204}{100}$$

(ix) 3$$\frac{26}{100}$$

(x) 18$$\frac{43}{100}$$

You might like these

• Like Decimal Fractions | Decimal Places | Decimal Fractions|Definition

Like Decimal Fractions are discussed here. Two or more decimal fractions are called like decimals if they have equal number of decimal places. However the number of digits in the integral part does not matter. 0.43, 10.41, 183.42, 1.81, 0.31 are all like fractions

• Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is missing either in the integral part or decimal part, substitute with 0.

• Multiplication of Decimal Numbers | Multiplying Decimals | Decimals

The rules of multiplying decimals are: (i) Take the two numbers as whole numbers (remove the decimal) and multiply. (ii) In the product, place the decimal point after leaving digits equal to the total number of decimal places in both numbers.

• Division of a Decimal by a Whole Number | Rules of Dividing Decimals

To divide a decimal number by a whole number the division is performed in the same way as in the whole numbers. We first divide the two numbers ignoring the decimal point and then place the decimal point in the quotient in the same position as in the dividend.

• Multiplication of a Decimal by a Decimal |Multiplying Decimals Example

To multiply a decimal number by a decimal number, we first multiply the two numbers ignoring the decimal points and then place the decimal point in the product in such a way that decimal places in the product is equal to the sum of the decimal places in the given numbers.

• Unlike Decimal Fractions | Unlike Decimals | Number of Decimal Places

Unlike decimal fractions are discussed here. Two or more decimal fractions are called unlike decimals if they have unequal numbers of decimal places. Let us consider some of the unlike decimals; (i) 8.4, 8.41, 8.412 In 8.4, 8.41, 8.412 the number of decimal places are 1, 2

• Equivalent Decimal Fractions | Like Decimal Fraction | Unlike Decimal

Equivalent decimal fractions are unlike fractions which are equal in value. Numbers obtained by inserting zeros after the extreme right digit in the decimal part of a decimal number are known as equivalent decimals.

• Comparison of Decimal Fractions | Comparing Decimals Numbers | Decimal

While comparing natural numbers we first compare total number of digits in both the numbers and if they are equal then we compare the digit at the extreme left. If they also equal then we compare the next digit and so on. We follow the same pattern while comparing the

Addition of decimal numbers are similar to addition of whole numbers. We convert them to like decimals and place the numbers vertically one below the other in such a way that the decimal point lies exactly on the vertical line. Add as usual as we learnt in the case of whole

• Subtraction of Decimal Fractions |Rules of Subtracting Decimal Numbers

The rules of subtracting decimal numbers are: (i) Write the digits of the given numbers one below the other such that the decimal points are in the same vertical line. (ii) Subtract as we subtract whole numbers. Let us consider some of the examples on subtraction