Formulae for Converting Product into Sum or Difference

How to remember the formulae for converting product into sum or difference?

2 sin X cos Y = sin (X + Y) + sin (X - Y) ………. (i)

2 cos X sin Y = sin (X + Y) - sin (X - Y) ………. (ii)

2 cos X cos Y = cos (X + Y) + cos (X - Y) ………. (iii)

2 sin X sin Y = cos (X - Y) - cos (X + Y) ………. (iv)


The following points will help us to remember the above four formulas:

(i)The product to be converted to sum or difference and should contain 2 as a factor.

(ii) The angles in sines or cosines of sum appear as ‘sum’ (i.e., X + Y) of the given angles X and Y.

(iii) The angles in sines or cosines of difference appear as ‘difference’ (i.e., X - Y) of the given angles X and Y.

(iv) In case of formula (i), we shall have the sum of two sines when the product consists of a pair of sine and cosine. The angle in sine (i.e. X) of product is greater than the angle of cosine (i.e. Y).

(v) In case of formula (ii), we shall have the difference of two sines when the product consists of a pair of cosine and sine. The angle in cosine (i.e. X) of product is greater than the angle of sine (i.e. Y).

(vi) In case of formula (iii), we shall have the sum of two cosines when the product consists of two cosines.

(v) In case of formula (iv), we shall have the difference of two cosines when the product consists of two sines.

(vi) In case of formula (i), (ii) and (iii) when the product consists of a pair of sine and cosine or two cosines we first write the sum (i.e. X + Y) and then the difference (i.e. X - Y) of the angles in the converted formula; but in case of formula

(iv) when the product consists of two sines we first write the difference and then the sum of the angle in the converted formula.

The following verbal statements will help us to remember the above four formulas:

For formula (i): 2 sin X cos Y = sin (sum) + sin (difference) (X > Y)

For formula (ii): 2 cos X sin Y = sin (sum) - sin (difference) (X > Y)

For formula (iii): 2 cos X cos Y = cos (sum) + cos (difference)

For formula (iv): 2 sin X sin Y = cos (difference) - cos (sum)

 Converting Product into Sum/Difference and Vice Versa






11 and 12 Grade Math

From Formulae for Converting Product into Sum or Difference to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 17, 24 01:53 PM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 17, 24 01:32 PM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More

  3. Worksheet on Third Grade Geometrical Shapes | Questions on Geometry

    Apr 16, 24 02:00 AM

    Worksheet on Geometrical Shapes
    Practice the math worksheet on third grade geometrical shapes. The questions will help the students to get prepared for the third grade geometry test. 1. Name the types of surfaces that you know. 2. W…

    Read More

  4. 4th Grade Mental Math on Factors and Multiples |Worksheet with Answers

    Apr 16, 24 01:15 AM

    In 4th grade mental math on factors and multiples students can practice different questions on prime numbers, properties of prime numbers, factors, properties of factors, even numbers, odd numbers, pr…

    Read More

  5. Worksheet on Factors and Multiples | Find the Missing Factors | Answer

    Apr 15, 24 11:30 PM

    Worksheet on Factors and Multiples
    Practice the questions given in the worksheet on factors and multiples. 1. Find out the even numbers. 27, 36, 48, 125, 360, 453, 518, 423, 54, 58, 917, 186, 423, 928, 358 2. Find out the odd numbers.

    Read More