Subscribe to our YouTube channel for the latest videos, updates, and tips.


Formulae for Converting Product into Sum or Difference

How to remember the formulae for converting product into sum or difference?

2 sin X cos Y = sin (X + Y) + sin (X - Y) ………. (i)

2 cos X sin Y = sin (X + Y) - sin (X - Y) ………. (ii)

2 cos X cos Y = cos (X + Y) + cos (X - Y) ………. (iii)

2 sin X sin Y = cos (X - Y) - cos (X + Y) ………. (iv)


The following points will help us to remember the above four formulas:

(i)The product to be converted to sum or difference and should contain 2 as a factor.

(ii) The angles in sines or cosines of sum appear as ‘sum’ (i.e., X + Y) of the given angles X and Y.

(iii) The angles in sines or cosines of difference appear as ‘difference’ (i.e., X - Y) of the given angles X and Y.

(iv) In case of formula (i), we shall have the sum of two sines when the product consists of a pair of sine and cosine. The angle in sine (i.e. X) of product is greater than the angle of cosine (i.e. Y).

(v) In case of formula (ii), we shall have the difference of two sines when the product consists of a pair of cosine and sine. The angle in cosine (i.e. X) of product is greater than the angle of sine (i.e. Y).

(vi) In case of formula (iii), we shall have the sum of two cosines when the product consists of two cosines.

(v) In case of formula (iv), we shall have the difference of two cosines when the product consists of two sines.

(vi) In case of formula (i), (ii) and (iii) when the product consists of a pair of sine and cosine or two cosines we first write the sum (i.e. X + Y) and then the difference (i.e. X - Y) of the angles in the converted formula; but in case of formula

(iv) when the product consists of two sines we first write the difference and then the sum of the angle in the converted formula.

The following verbal statements will help us to remember the above four formulas:

For formula (i): 2 sin X cos Y = sin (sum) + sin (difference) (X > Y)

For formula (ii): 2 cos X sin Y = sin (sum) - sin (difference) (X > Y)

For formula (iii): 2 cos X cos Y = cos (sum) + cos (difference)

For formula (iv): 2 sin X sin Y = cos (difference) - cos (sum)

 Converting Product into Sum/Difference and Vice Versa






11 and 12 Grade Math

From Formulae for Converting Product into Sum or Difference to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More