Express the Sum or Difference as a Product

We will how to express the sum or difference as a product.

1. Convert sin 7α + sin 5α as a product.

Solution:

sin 7α + sin 5α

= 2 sin (7α + 5α)/2 cos (7α - 5α)/2, [Since, sin α + sin β = 2 sin (α + β)/2 cos (α - β)/2]

= 2 sin 6α cos α


2. Express sin 7A + sin 4A as a product.

Solution:

sin 7A + sin 4A

= 2 sin (7A + 4A)/2 cos (7A - 4A)/2

= 2 sin (11A/2) cos (3A)/2

3. Express the sum or difference as a product:  cos ∅ - cos 3∅.

Solution:

cos ∅ - cos 3∅

= 2 sin (∅  + 3∅)/2 sin (3∅ - ∅)/2

= 2 sin 2∅ ∙ sin ∅.

 

4. Express cos 5θ - cos 11θ as a product. 

Solution:

cos 5θ - cos 11θ

= 2 sin (5θ + 11θ)/2 sin (11θ - 5θ), [Since, cos α - cos β = 2 sin (α + β)/2 sin (β - α)/2]

= 2 sin 8θ sin 3θ

 

5. Prove that, sin 55° - cos 55° = √2 sin 10°

Solution:

L.H.S. = sin 55° - cos 55°

           = sin 55° - cos (90° - 35°)

           = sin 55° - sin 35°

           = 2cos (55° + 35°)/2 sin (55° - 35°)/2

           = 2 cos 45° sin 10°

           = 2 ∙ 1/(√2) sin 10°

           = √2 sin 10° = R.H.S.         Proved


6. Prove that sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

Solution:

L.H.S. = sin x + sin 3x + sin 5x + sin 7x

           = (sin 7x + sin x) + (sin 5x + sin 3x)

           = 2 sin (7x + x)/2 cos (7x - x)/2 + 2 sin (5x + 3x)/2 cos (5x - 3x)/2

           = 2 sin 4x cos 3x + 2 sin 4x cos x

           = 2 sin 4x (cos 3x + cos x)

           = 2 sin 4x ∙ 2 cos (3x + x)/2 cos (3x - x)/2

           = 4 sin 4x cos 2x cos x = R.H.S.

 

7. Prove that, sin 20° + sin 140° - cos 10° = 0

Solution:

L.H.S. = sin 20° + sin 140° - cos 10°

           = 2 ∙ sin (140° + 20°)/2 cos (140° - 20°)/2 - cos 10°, [Since sin C + sin D = 2 sin (C + D)/2 cos (C - D)/2]

           = 2 sin 80° ∙ cos 60° - cos 10°

           = 2 ∙ sin (90° - 10°) ∙ 1/2 - cos 10° [Since, cos 60° = 1/2]

           = cos 10° - cos 10°

           = 0 = R.H.S.         Proved

8. Prove that cos 20° cos 40° cos 80° = 1/8

Solution:

cos 20° cos 40° cos 80°

= ½ cos 40° (2 cos 80° cos 20°)

= ½ cos 40° [cos (80° + 20°) + cos (80° - 20°)]

= ½ cos 40° (cos 100° + cos 60°)

= ½ cos 40° (cos 100° + ½)

= ½ cos 40° cos 100° + ¼ cos 40°

= ¼ (2 cos 40° cos 100°) + ¼ cos 40°

= ¼ [cos (40° + 100°) + cos (40° - 100°)] + ¼ cos 40°

= ¼ [cos 140° + cos (-60°)] + ¼ cos 40°

= ¼ [cos 140° + cos 60°] + ¼ cos 40°

= ¼ [cos 140° + ½] + ¼ cos 40°

= ¼ cos 140° + 1/8 + ¼ cos 40°

= ¼ cos (180° - 40°) + 1/8 + ¼ cos 40°

= - ¼ cos 40° + 1/8 + ¼ cos 40°

= 1/8 = R.H.S.                      Proved


9. Prove that, sin 20° sin 40° sin 60° sin 80°= 3/16

Solution:

L.H.S. = sin 20° ∙ sin 40° ∙ (√3)/2 ∙ sin 80°

           = (√3)/4 ∙ sin 20° (2 sin 40° sin 80°)

           = (√3)/4 ∙ sin 20° [cos (80° - 40°) - cos (80° + 40°)], [Since 2 sin A sin B = cos (A - B) - cos (A + B)]

           = (√3)/4 ∙ sin 20° [cos 40° - cos 120°]

           = (√3)/8 [2 sin 20° cos 40° - 2 sin 20° ∙ (- 1/2)], [Since, cos 120° = cos (180° - 60°) = - cos 60° = -1/2]

           = (√3)/8 [sin (40° + 20°) - sin(40° - 20°) + sin 20°]

           = (√3)/8 [sin 60° - sin 20° + sin 20°]

           = (√3)/8 ∙ (√3)/2 

           = 3/16 = R.H.S.         Proved


10. Prove that, (sin ∅ sin 9∅ + sin 3∅ sin 5∅)/(sin ∅ cos 9∅ + sin 3∅cos 5∅) = tan 6∅

Solution:

 L.H.S. = (sin ∅ sin 9∅+sin 3∅ sin 5∅)/(sin ∅ cos 9∅ +sin 3∅ cos 5∅)

           = (2 sin ∅ sin 9∅ +2 sin 3∅ sin 5∅)/(2 sin ∅ cos 9∅ +2 sin 3∅ cos 5∅)

           = (cos 8∅ - cos 10∅ + cos 2∅ - cos 8∅)/(sin 10∅ - sin 8∅ + sin 8∅ - sin 2∅)  =  (cos 2∅ - cos 10∅)/sin (10 ∅ - sin 2∅)

           = (2 sin 6∅ sin 4∅)/(2 sin 6∅ sin 4∅ ) 

           = tan 6∅    proved


11. Show that 2 cos π/13 cos 9π/13 + cos 3π/13 + cos 5π/13 = 0

Solution:

2 cos π/13 2 cos 9π/13 + cos 3π/13 + cos 5π/13

= 2 cos 9π/13 cos π/13 + cos 3π/13 + cos 5π/13

= cos (9π/13 + π/13) + cos (9π/13 - π/13) + cos 3π/13 + cos 5π/13, [Since, 2 cos X cos Y = cos (X + Y) + cos (X - Y)]

= cos 10π/13 + cos 8π/13 + cos 3π/13 + cos 5π/13

= cos (π - cos 3π/13) + cos (π - cos 5π/13) + cos 3π/13 + cos 5π/13

= - cos 3π/13 - cos 5π/13 + cos 3π/13 + cos 5π/13

= 0

 

12. Express cos A - cos B + cos C - cos (A + B + C) in the product form.

Solution:

(cos A - cos B) + [cos C - cos (A + B + C)]

= 2 sin (A + B)/2 sin (B - A)/2 + 2 sin (C + A + B + C)/2 sin (A + B + C - C)/2

= 2 sin (A+B)/2 {sin (B - A)/2 + sin (A + B + 2C)/2}

= 2 sin (A + B)/2 {2 sin (B - A + A + B + 2C)/4 ∙ cos (A + B + 2C - B + A)/4}

= 4 sin (A + B)/2 sin (B + C)/2 cos (C + A)/2.

 Converting Product into Sum/Difference and Vice Versa






11 and 12 Grade Math

From Express the Sum or Difference as a Product to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 02:45 AM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  2. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More

  3. Formation of Numbers | Smallest and Greatest Number| Number Formation

    Jul 15, 25 11:46 AM

    In formation of numbers we will learn the numbers having different numbers of digits. We know that: (i) Greatest number of one digit = 9,

    Read More

  4. 5th Grade Quadrilaterals | Square | Rectangle | Parallelogram |Rhombus

    Jul 15, 25 02:01 AM

    Square
    Quadrilaterals are known as four sided polygon.What is a quadrilateral? A closed figure made of our line segments is called a quadrilateral. For example:

    Read More

  5. 5th Grade Geometry Practice Test | Angle | Triangle | Circle |Free Ans

    Jul 14, 25 01:53 AM

    Name the Angles
    In 5th grade geometry practice test you will get different types of practice questions on lines, types of angle, triangles, properties of triangles, classification of triangles, construction of triang…

    Read More