Express the Sum or Difference as a Product

We will how to express the sum or difference as a product.

1. Convert sin 7α + sin 5α as a product.

Solution:

sin 7α + sin 5α

= 2 sin (7α + 5α)/2 cos (7α - 5α)/2, [Since, sin α + sin β = 2 sin (α + β)/2 cos (α - β)/2]

= 2 sin 6α cos α


2. Express sin 7A + sin 4A as a product.

Solution:

sin 7A + sin 4A

= 2 sin (7A + 4A)/2 cos (7A - 4A)/2

= 2 sin (11A/2) cos (3A)/2

3. Express the sum or difference as a product:  cos ∅ - cos 3∅.

Solution:

cos ∅ - cos 3∅

= 2 sin (∅  + 3∅)/2 sin (3∅ - ∅)/2

= 2 sin 2∅ ∙ sin ∅.

 

4. Express cos 5θ - cos 11θ as a product. 

Solution:

cos 5θ - cos 11θ

= 2 sin (5θ + 11θ)/2 sin (11θ - 5θ), [Since, cos α - cos β = 2 sin (α + β)/2 sin (β - α)/2]

= 2 sin 8θ sin 3θ

 

5. Prove that, sin 55° - cos 55° = √2 sin 10°

Solution:

L.H.S. = sin 55° - cos 55°

           = sin 55° - cos (90° - 35°)

           = sin 55° - sin 35°

           = 2cos (55° + 35°)/2 sin (55° - 35°)/2

           = 2 cos 45° sin 10°

           = 2 ∙ 1/(√2) sin 10°

           = √2 sin 10° = R.H.S.         Proved


6. Prove that sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

Solution:

L.H.S. = sin x + sin 3x + sin 5x + sin 7x

           = (sin 7x + sin x) + (sin 5x + sin 3x)

           = 2 sin (7x + x)/2 cos (7x - x)/2 + 2 sin (5x + 3x)/2 cos (5x - 3x)/2

           = 2 sin 4x cos 3x + 2 sin 4x cos x

           = 2 sin 4x (cos 3x + cos x)

           = 2 sin 4x ∙ 2 cos (3x + x)/2 cos (3x - x)/2

           = 4 sin 4x cos 2x cos x = R.H.S.

 

7. Prove that, sin 20° + sin 140° - cos 10° = 0

Solution:

L.H.S. = sin 20° + sin 140° - cos 10°

           = 2 ∙ sin (140° + 20°)/2 cos (140° - 20°)/2 - cos 10°, [Since sin C + sin D = 2 sin (C + D)/2 cos (C - D)/2]

           = 2 sin 80° ∙ cos 60° - cos 10°

           = 2 ∙ sin (90° - 10°) ∙ 1/2 - cos 10° [Since, cos 60° = 1/2]

           = cos 10° - cos 10°

           = 0 = R.H.S.         Proved

8. Prove that cos 20° cos 40° cos 80° = 1/8

Solution:

cos 20° cos 40° cos 80°

= ½ cos 40° (2 cos 80° cos 20°)

= ½ cos 40° [cos (80° + 20°) + cos (80° - 20°)]

= ½ cos 40° (cos 100° + cos 60°)

= ½ cos 40° (cos 100° + ½)

= ½ cos 40° cos 100° + ¼ cos 40°

= ¼ (2 cos 40° cos 100°) + ¼ cos 40°

= ¼ [cos (40° + 100°) + cos (40° - 100°)] + ¼ cos 40°

= ¼ [cos 140° + cos (-60°)] + ¼ cos 40°

= ¼ [cos 140° + cos 60°] + ¼ cos 40°

= ¼ [cos 140° + ½] + ¼ cos 40°

= ¼ cos 140° + 1/8 + ¼ cos 40°

= ¼ cos (180° - 40°) + 1/8 + ¼ cos 40°

= - ¼ cos 40° + 1/8 + ¼ cos 40°

= 1/8 = R.H.S.                      Proved


9. Prove that, sin 20° sin 40° sin 60° sin 80°= 3/16

Solution:

L.H.S. = sin 20° ∙ sin 40° ∙ (√3)/2 ∙ sin 80°

           = (√3)/4 ∙ sin 20° (2 sin 40° sin 80°)

           = (√3)/4 ∙ sin 20° [cos (80° - 40°) - cos (80° + 40°)], [Since 2 sin A sin B = cos (A - B) - cos (A + B)]

           = (√3)/4 ∙ sin 20° [cos 40° - cos 120°]

           = (√3)/8 [2 sin 20° cos 40° - 2 sin 20° ∙ (- 1/2)], [Since, cos 120° = cos (180° - 60°) = - cos 60° = -1/2]

           = (√3)/8 [sin (40° + 20°) - sin(40° - 20°) + sin 20°]

           = (√3)/8 [sin 60° - sin 20° + sin 20°]

           = (√3)/8 ∙ (√3)/2 

           = 3/16 = R.H.S.         Proved


10. Prove that, (sin ∅ sin 9∅ + sin 3∅ sin 5∅)/(sin ∅ cos 9∅ + sin 3∅cos 5∅) = tan 6∅

Solution:

 L.H.S. = (sin ∅ sin 9∅+sin 3∅ sin 5∅)/(sin ∅ cos 9∅ +sin 3∅ cos 5∅)

           = (2 sin ∅ sin 9∅ +2 sin 3∅ sin 5∅)/(2 sin ∅ cos 9∅ +2 sin 3∅ cos 5∅)

           = (cos 8∅ - cos 10∅ + cos 2∅ - cos 8∅)/(sin 10∅ - sin 8∅ + sin 8∅ - sin 2∅)  =  (cos 2∅ - cos 10∅)/sin (10 ∅ - sin 2∅)

           = (2 sin 6∅ sin 4∅)/(2 sin 6∅ sin 4∅ ) 

           = tan 6∅    proved


11. Show that 2 cos π/13 cos 9π/13 + cos 3π/13 + cos 5π/13 = 0

Solution:

2 cos π/13 2 cos 9π/13 + cos 3π/13 + cos 5π/13

= 2 cos 9π/13 cos π/13 + cos 3π/13 + cos 5π/13

= cos (9π/13 + π/13) + cos (9π/13 - π/13) + cos 3π/13 + cos 5π/13, [Since, 2 cos X cos Y = cos (X + Y) + cos (X - Y)]

= cos 10π/13 + cos 8π/13 + cos 3π/13 + cos 5π/13

= cos (π - cos 3π/13) + cos (π - cos 5π/13) + cos 3π/13 + cos 5π/13

= - cos 3π/13 - cos 5π/13 + cos 3π/13 + cos 5π/13

= 0

 

12. Express cos A - cos B + cos C - cos (A + B + C) in the product form.

Solution:

(cos A - cos B) + [cos C - cos (A + B + C)]

= 2 sin (A + B)/2 sin (B - A)/2 + 2 sin (C + A + B + C)/2 sin (A + B + C - C)/2

= 2 sin (A+B)/2 {sin (B - A)/2 + sin (A + B + 2C)/2}

= 2 sin (A + B)/2 {2 sin (B - A + A + B + 2C)/4 ∙ cos (A + B + 2C - B + A)/4}

= 4 sin (A + B)/2 sin (B + C)/2 cos (C + A)/2.

 Converting Product into Sum/Difference and Vice Versa






11 and 12 Grade Math

From Express the Sum or Difference as a Product to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More