Express the Sum or Difference as a Product

We will how to express the sum or difference as a product.

1. Convert sin 7α + sin 5α as a product.

Solution:

sin 7α + sin 5α

= 2 sin (7α + 5α)/2 cos (7α - 5α)/2, [Since, sin α + sin β = 2 sin (α + β)/2 cos (α - β)/2]

= 2 sin 6α cos α


2. Express sin 7A + sin 4A as a product.

Solution:

sin 7A + sin 4A

= 2 sin (7A + 4A)/2 cos (7A - 4A)/2

= 2 sin (11A/2) cos (3A)/2

3. Express the sum or difference as a product:  cos ∅ - cos 3∅.

Solution:

cos ∅ - cos 3∅

= 2 sin (∅  + 3∅)/2 sin (3∅ - ∅)/2

= 2 sin 2∅ ∙ sin ∅.

 

4. Express cos 5θ - cos 11θ as a product. 

Solution:

cos 5θ - cos 11θ

= 2 sin (5θ + 11θ)/2 sin (11θ - 5θ), [Since, cos α - cos β = 2 sin (α + β)/2 sin (β - α)/2]

= 2 sin 8θ sin 3θ

 

5. Prove that, sin 55° - cos 55° = √2 sin 10°

Solution:

L.H.S. = sin 55° - cos 55°

           = sin 55° - cos (90° - 35°)

           = sin 55° - sin 35°

           = 2cos (55° + 35°)/2 sin (55° - 35°)/2

           = 2 cos 45° sin 10°

           = 2 ∙ 1/(√2) sin 10°

           = √2 sin 10° = R.H.S.         Proved


6. Prove that sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

Solution:

L.H.S. = sin x + sin 3x + sin 5x + sin 7x

           = (sin 7x + sin x) + (sin 5x + sin 3x)

           = 2 sin (7x + x)/2 cos (7x - x)/2 + 2 sin (5x + 3x)/2 cos (5x - 3x)/2

           = 2 sin 4x cos 3x + 2 sin 4x cos x

           = 2 sin 4x (cos 3x + cos x)

           = 2 sin 4x ∙ 2 cos (3x + x)/2 cos (3x - x)/2

           = 4 sin 4x cos 2x cos x = R.H.S.

 

7. Prove that, sin 20° + sin 140° - cos 10° = 0

Solution:

L.H.S. = sin 20° + sin 140° - cos 10°

           = 2 ∙ sin (140° + 20°)/2 cos (140° - 20°)/2 - cos 10°, [Since sin C + sin D = 2 sin (C + D)/2 cos (C - D)/2]

           = 2 sin 80° ∙ cos 60° - cos 10°

           = 2 ∙ sin (90° - 10°) ∙ 1/2 - cos 10° [Since, cos 60° = 1/2]

           = cos 10° - cos 10°

           = 0 = R.H.S.         Proved

8. Prove that cos 20° cos 40° cos 80° = 1/8

Solution:

cos 20° cos 40° cos 80°

= ½ cos 40° (2 cos 80° cos 20°)

= ½ cos 40° [cos (80° + 20°) + cos (80° - 20°)]

= ½ cos 40° (cos 100° + cos 60°)

= ½ cos 40° (cos 100° + ½)

= ½ cos 40° cos 100° + ¼ cos 40°

= ¼ (2 cos 40° cos 100°) + ¼ cos 40°

= ¼ [cos (40° + 100°) + cos (40° - 100°)] + ¼ cos 40°

= ¼ [cos 140° + cos (-60°)] + ¼ cos 40°

= ¼ [cos 140° + cos 60°] + ¼ cos 40°

= ¼ [cos 140° + ½] + ¼ cos 40°

= ¼ cos 140° + 1/8 + ¼ cos 40°

= ¼ cos (180° - 40°) + 1/8 + ¼ cos 40°

= - ¼ cos 40° + 1/8 + ¼ cos 40°

= 1/8 = R.H.S.                      Proved


9. Prove that, sin 20° sin 40° sin 60° sin 80°= 3/16

Solution:

L.H.S. = sin 20° ∙ sin 40° ∙ (√3)/2 ∙ sin 80°

           = (√3)/4 ∙ sin 20° (2 sin 40° sin 80°)

           = (√3)/4 ∙ sin 20° [cos (80° - 40°) - cos (80° + 40°)], [Since 2 sin A sin B = cos (A - B) - cos (A + B)]

           = (√3)/4 ∙ sin 20° [cos 40° - cos 120°]

           = (√3)/8 [2 sin 20° cos 40° - 2 sin 20° ∙ (- 1/2)], [Since, cos 120° = cos (180° - 60°) = - cos 60° = -1/2]

           = (√3)/8 [sin (40° + 20°) - sin(40° - 20°) + sin 20°]

           = (√3)/8 [sin 60° - sin 20° + sin 20°]

           = (√3)/8 ∙ (√3)/2 

           = 3/16 = R.H.S.         Proved


10. Prove that, (sin ∅ sin 9∅ + sin 3∅ sin 5∅)/(sin ∅ cos 9∅ + sin 3∅cos 5∅) = tan 6∅

Solution:

 L.H.S. = (sin ∅ sin 9∅+sin 3∅ sin 5∅)/(sin ∅ cos 9∅ +sin 3∅ cos 5∅)

           = (2 sin ∅ sin 9∅ +2 sin 3∅ sin 5∅)/(2 sin ∅ cos 9∅ +2 sin 3∅ cos 5∅)

           = (cos 8∅ - cos 10∅ + cos 2∅ - cos 8∅)/(sin 10∅ - sin 8∅ + sin 8∅ - sin 2∅)  =  (cos 2∅ - cos 10∅)/sin (10 ∅ - sin 2∅)

           = (2 sin 6∅ sin 4∅)/(2 sin 6∅ sin 4∅ ) 

           = tan 6∅    proved


11. Show that 2 cos π/13 cos 9π/13 + cos 3π/13 + cos 5π/13 = 0

Solution:

2 cos π/13 2 cos 9π/13 + cos 3π/13 + cos 5π/13

= 2 cos 9π/13 cos π/13 + cos 3π/13 + cos 5π/13

= cos (9π/13 + π/13) + cos (9π/13 - π/13) + cos 3π/13 + cos 5π/13, [Since, 2 cos X cos Y = cos (X + Y) + cos (X - Y)]

= cos 10π/13 + cos 8π/13 + cos 3π/13 + cos 5π/13

= cos (π - cos 3π/13) + cos (π - cos 5π/13) + cos 3π/13 + cos 5π/13

= - cos 3π/13 - cos 5π/13 + cos 3π/13 + cos 5π/13

= 0

 

12. Express cos A - cos B + cos C - cos (A + B + C) in the product form.

Solution:

(cos A - cos B) + [cos C - cos (A + B + C)]

= 2 sin (A + B)/2 sin (B - A)/2 + 2 sin (C + A + B + C)/2 sin (A + B + C - C)/2

= 2 sin (A+B)/2 {sin (B - A)/2 + sin (A + B + 2C)/2}

= 2 sin (A + B)/2 {2 sin (B - A + A + B + 2C)/4 ∙ cos (A + B + 2C - B + A)/4}

= 4 sin (A + B)/2 sin (B + C)/2 cos (C + A)/2.

 Converting Product into Sum/Difference and Vice Versa






11 and 12 Grade Math

From Express the Sum or Difference as a Product to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. What is a Triangle? | Types of Triangle | Scalene Triangle | Isosceles

    Jun 17, 24 11:22 PM

    What is a triangle
    A simple closed curve or a polygon formed by three line-segments (sides) is called a triangle. The above shown shapes are triangles. The symbol of a triangle is ∆. A triangle is a polygon with three s…

    Read More

  2. Interior and Exterior of an Angle | Interior Angle | Exterior Angle

    Jun 16, 24 05:20 PM

    Interior of an Angle
    Interior and exterior of an angle is explained here. The shaded portion between the arms BA and BC of the angle ABC can be extended indefinitely.

    Read More

  3. Angles | Magnitude of an Angle | Measure of an angle | Working Rules

    Jun 16, 24 04:12 PM

    Naming an Angle
    Angles are very important in our daily life so it’s very necessary to understand about angle. Two rays meeting at a common endpoint form an angle. In the adjoining figure, two rays AB and BC are calle

    Read More

  4. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Jun 16, 24 02:34 PM

    Square - Polygon
    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  5. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Jun 16, 24 12:31 PM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More