Express the Sum or Difference as a Product

We will how to express the sum or difference as a product.

1. Convert sin 7α + sin 5α as a product.

Solution:

sin 7α + sin 5α

= 2 sin (7α + 5α)/2 cos (7α - 5α)/2, [Since, sin α + sin β = 2 sin (α + β)/2 cos (α - β)/2]

= 2 sin 6α cos α


2. Express sin 7A + sin 4A as a product.

Solution:

sin 7A + sin 4A

= 2 sin (7A + 4A)/2 cos (7A - 4A)/2

= 2 sin (11A/2) cos (3A)/2

3. Express the sum or difference as a product:  cos ∅ - cos 3∅.

Solution:

cos ∅ - cos 3∅

= 2 sin (∅  + 3∅)/2 sin (3∅ - ∅)/2

= 2 sin 2∅ ∙ sin ∅.

 

4. Express cos 5θ - cos 11θ as a product. 

Solution:

cos 5θ - cos 11θ

= 2 sin (5θ + 11θ)/2 sin (11θ - 5θ), [Since, cos α - cos β = 2 sin (α + β)/2 sin (β - α)/2]

= 2 sin 8θ sin 3θ

 

5. Prove that, sin 55° - cos 55° = √2 sin 10°

Solution:

L.H.S. = sin 55° - cos 55°

           = sin 55° - cos (90° - 35°)

           = sin 55° - sin 35°

           = 2cos (55° + 35°)/2 sin (55° - 35°)/2

           = 2 cos 45° sin 10°

           = 2 ∙ 1/(√2) sin 10°

           = √2 sin 10° = R.H.S.         Proved


6. Prove that sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x

Solution:

L.H.S. = sin x + sin 3x + sin 5x + sin 7x

           = (sin 7x + sin x) + (sin 5x + sin 3x)

           = 2 sin (7x + x)/2 cos (7x - x)/2 + 2 sin (5x + 3x)/2 cos (5x - 3x)/2

           = 2 sin 4x cos 3x + 2 sin 4x cos x

           = 2 sin 4x (cos 3x + cos x)

           = 2 sin 4x ∙ 2 cos (3x + x)/2 cos (3x - x)/2

           = 4 sin 4x cos 2x cos x = R.H.S.

 

7. Prove that, sin 20° + sin 140° - cos 10° = 0

Solution:

L.H.S. = sin 20° + sin 140° - cos 10°

           = 2 ∙ sin (140° + 20°)/2 cos (140° - 20°)/2 - cos 10°, [Since sin C + sin D = 2 sin (C + D)/2 cos (C - D)/2]

           = 2 sin 80° ∙ cos 60° - cos 10°

           = 2 ∙ sin (90° - 10°) ∙ 1/2 - cos 10° [Since, cos 60° = 1/2]

           = cos 10° - cos 10°

           = 0 = R.H.S.         Proved

8. Prove that cos 20° cos 40° cos 80° = 1/8

Solution:

cos 20° cos 40° cos 80°

= ½ cos 40° (2 cos 80° cos 20°)

= ½ cos 40° [cos (80° + 20°) + cos (80° - 20°)]

= ½ cos 40° (cos 100° + cos 60°)

= ½ cos 40° (cos 100° + ½)

= ½ cos 40° cos 100° + ¼ cos 40°

= ¼ (2 cos 40° cos 100°) + ¼ cos 40°

= ¼ [cos (40° + 100°) + cos (40° - 100°)] + ¼ cos 40°

= ¼ [cos 140° + cos (-60°)] + ¼ cos 40°

= ¼ [cos 140° + cos 60°] + ¼ cos 40°

= ¼ [cos 140° + ½] + ¼ cos 40°

= ¼ cos 140° + 1/8 + ¼ cos 40°

= ¼ cos (180° - 40°) + 1/8 + ¼ cos 40°

= - ¼ cos 40° + 1/8 + ¼ cos 40°

= 1/8 = R.H.S.                      Proved


9. Prove that, sin 20° sin 40° sin 60° sin 80°= 3/16

Solution:

L.H.S. = sin 20° ∙ sin 40° ∙ (√3)/2 ∙ sin 80°

           = (√3)/4 ∙ sin 20° (2 sin 40° sin 80°)

           = (√3)/4 ∙ sin 20° [cos (80° - 40°) - cos (80° + 40°)], [Since 2 sin A sin B = cos (A - B) - cos (A + B)]

           = (√3)/4 ∙ sin 20° [cos 40° - cos 120°]

           = (√3)/8 [2 sin 20° cos 40° - 2 sin 20° ∙ (- 1/2)], [Since, cos 120° = cos (180° - 60°) = - cos 60° = -1/2]

           = (√3)/8 [sin (40° + 20°) - sin(40° - 20°) + sin 20°]

           = (√3)/8 [sin 60° - sin 20° + sin 20°]

           = (√3)/8 ∙ (√3)/2 

           = 3/16 = R.H.S.         Proved


10. Prove that, (sin ∅ sin 9∅ + sin 3∅ sin 5∅)/(sin ∅ cos 9∅ + sin 3∅cos 5∅) = tan 6∅

Solution:

 L.H.S. = (sin ∅ sin 9∅+sin 3∅ sin 5∅)/(sin ∅ cos 9∅ +sin 3∅ cos 5∅)

           = (2 sin ∅ sin 9∅ +2 sin 3∅ sin 5∅)/(2 sin ∅ cos 9∅ +2 sin 3∅ cos 5∅)

           = (cos 8∅ - cos 10∅ + cos 2∅ - cos 8∅)/(sin 10∅ - sin 8∅ + sin 8∅ - sin 2∅)  =  (cos 2∅ - cos 10∅)/sin (10 ∅ - sin 2∅)

           = (2 sin 6∅ sin 4∅)/(2 sin 6∅ sin 4∅ ) 

           = tan 6∅    proved


11. Show that 2 cos π/13 cos 9π/13 + cos 3π/13 + cos 5π/13 = 0

Solution:

2 cos π/13 2 cos 9π/13 + cos 3π/13 + cos 5π/13

= 2 cos 9π/13 cos π/13 + cos 3π/13 + cos 5π/13

= cos (9π/13 + π/13) + cos (9π/13 - π/13) + cos 3π/13 + cos 5π/13, [Since, 2 cos X cos Y = cos (X + Y) + cos (X - Y)]

= cos 10π/13 + cos 8π/13 + cos 3π/13 + cos 5π/13

= cos (π - cos 3π/13) + cos (π - cos 5π/13) + cos 3π/13 + cos 5π/13

= - cos 3π/13 - cos 5π/13 + cos 3π/13 + cos 5π/13

= 0

 

12. Express cos A - cos B + cos C - cos (A + B + C) in the product form.

Solution:

(cos A - cos B) + [cos C - cos (A + B + C)]

= 2 sin (A + B)/2 sin (B - A)/2 + 2 sin (C + A + B + C)/2 sin (A + B + C - C)/2

= 2 sin (A+B)/2 {sin (B - A)/2 + sin (A + B + 2C)/2}

= 2 sin (A + B)/2 {2 sin (B - A + A + B + 2C)/4 ∙ cos (A + B + 2C - B + A)/4}

= 4 sin (A + B)/2 sin (B + C)/2 cos (C + A)/2.

 Converting Product into Sum/Difference and Vice Versa






11 and 12 Grade Math

From Express the Sum or Difference as a Product to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Comparing and Ordering Decimals |Arranging Decimals

    Apr 19, 25 12:16 PM

    Arranging Decimals
    Practice different types of math questions given in the worksheet on comparing and ordering decimals. This worksheet contains questions mainly related to compare decimals and then place the decimals i…

    Read More

  2. Comparison of Decimal Fractions | Comparing Decimals Numbers | Decimal

    Apr 19, 25 11:47 AM

    Comparison of Decimal Fractions
    While comparing natural numbers we first compare total number of digits in both the numbers and if they are equal then we compare the digit at the extreme left. If they also equal then we compare the…

    Read More

  3. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Apr 19, 25 11:25 AM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  4. Missing Numbers up to 10 | Worksheets on Missing Numbers up to 10

    Apr 18, 25 04:53 PM

    missing numbers up to 10
    Printable worksheets on missing numbers up to 10 help the kids to practice counting of the numbers.

    Read More

  5. Ordering Decimals | Comparing Decimals | Ascending & Descending Order

    Apr 18, 25 01:49 PM

    Ordering Decimal Numbers
    In ordering decimals we will learn how to compare two or more decimals. (i) Convert each of them as like decimals. (ii) Compare these decimals just as we compare two whole numbers ignoring

    Read More