Conditional Trigonometric Identities

In conditional trigonometric identities we will discuss certain relationship exists among the angles involved. We know some of the trigonometric identities which were true for all values of the angles involved. These identities hold for all values of the angles which satisfy the given conditions among them and hence they are called conditional trigonometric identities.

Such identities involving different trigonometrical ratios of three or more angles can be deduced when these angles are connected by some given relation. Suppose, if the sum of three angles be equal to two right angles then we can establish many important identities involving trigonometrical ratios of those angles. To establish such identities we require to use the properties of supplementary and complementary angles.

If A, B and C denote the angles of a triangle ABC, then the relation A + B + C = π enables us to establish many important identities involving trigonometric ratios of these angles The following results are useful to obtain the said identities.

If A + B + C = π, then the sum of any two angles is supplementary to the third i.e.,

(i) B + C = π - A or, C + A = π - B or A + B = π - C.

(ii) If A + B + C = π then sin (A + B) = sin (π - C) = sin C

                                      sin (B + C) = sin (π - A) = sin A 

                                      sin (C + A) = sin (π - B) = sin B


(iii) If A + B + C = π then cos (A + B) = cos (π - C) = - cos C  
                                  cos (B + C) = cos (π - A) = - cos A
                                  cos (C + A) = cos (π - B) = - cos B


(iv) If A + B + C = π then tan (A + B) = tan (π - C) = - tan C

                                      tan (B + C) = tan (π - A) = - tan A

                                      tan (C + A) = tan (π - B) = - tan B


(v) If A + B + C = π then \(\frac{A}{2}\) + \(\frac{B}{2}\) + \(\frac{C}{2}\) = \(\frac{π}{2}\)


Hence, it is evident that the sum of any two of the three angles \(\frac{C}{2}\), \(\frac{B}{2}\), \(\frac{C}{2}\)  is complementary to the third.

i.e., \(\frac{A  +  B}{2}\) = \(\frac{π}{2}\) - \(\frac{C}{2}\),

\(\frac{B  +  C}{2}\) = \(\frac{π}{2}\) - \(\frac{A}{2}\)

\(\frac{C  +  A}{2}\) = \(\frac{π}{2}\) - \(\frac{B}{2}\)

 

Therefore,

sin (\(\frac{A}{2}\) + \(\frac{B}{2}\)) = sin \(\frac{π}{2}\) - \(\frac{C}{2}\) = cos \(\frac{C}{2}\)

sin (\(\frac{B}{2}\) + \(\frac{C}{2}\)) = sin \(\frac{π}{2}\) - \(\frac{A}{2}\) = cos \(\frac{A}{2}\)

sin (\(\frac{C}{2}\) + \(\frac{A}{2}\)) = sin \(\frac{π}{2}\) - \(\frac{B}{2}\) = cos \(\frac{B}{2}\)

cos (\(\frac{A}{2}\) + \(\frac{B}{2}\)) = cos \(\frac{π}{2}\) - \(\frac{C}{2}\) = sin \(\frac{C}{2}\)

sin (\(\frac{B}{2}\) + \(\frac{C}{2}\)) = cos \(\frac{π}{2}\) - \(\frac{A}{2}\) = sin \(\frac{A}{2}\)

sin (\(\frac{C}{2}\) + \(\frac{A}{2}\)) = cos \(\frac{π}{2}\) - \(\frac{B}{2}\) = sin \(\frac{B}{2}\)

tan (\(\frac{A}{2}\) + \(\frac{B}{2}\)) = tan \(\frac{π}{2}\) - \(\frac{C}{2}\) = cot \(\frac{C}{2}\)

tan (\(\frac{B}{2}\) + \(\frac{C}{2}\)) = tan \(\frac{π}{2}\) - \(\frac{A}{2}\) = cot \(\frac{A}{2}\)

tan (\(\frac{C}{2}\) + \(\frac{A}{2}\)) = tan \(\frac{π}{2}\) - \(\frac{B}{2}\) = cot \(\frac{B}{2}\)

 Conditional Trigonometric Identities







11 and 12 Grade Math

From Conditional Trigonometric Identities to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Adding 1-Digit Number | Understand the Concept one Digit Number

    Apr 26, 24 01:55 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  2. Subtracting 2-Digit Numbers | How to Subtract Two Digit Numbers?

    Apr 26, 24 12:36 PM

    Subtracting 2-Digit Numbers
    In subtracting 2-digit numbers we will subtract or minus a two-digit number from another two-digit number. To find the difference between the two numbers we need to ‘ones from ones’ and ‘tens from

    Read More

  3. 1st Grade Word Problems on Subtraction | Subtracting 2-Digit Numbers

    Apr 26, 24 12:06 PM

    1st Grade Word Problems on Subtraction
    In 1st grade word problems on subtraction students can practice the questions on word problems based on subtraction. This exercise sheet on subtraction can be practiced by the students to get more ide…

    Read More

  4. Subtracting 1-Digit Number | Subtract or Minus Two One-Digit Number

    Apr 26, 24 11:21 AM

    Cross Out 6 Objects
    In subtracting 1-digit number we will subtract or minus one-digit number from one-digit number or one-digit number from 2-digit number and find the difference between them. We know that subtraction me…

    Read More

  5. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 05:34 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More